# PAMS Technical Documentation NSE–3 Series Transceivers

# Chapter 3 System Module

# CONTENTS

| Transceiver NSE-3                         | 3 – 5            |
|-------------------------------------------|------------------|
| Introduction                              | 3 – 5            |
| Functional Description                    | 3 – 5            |
| Interconnection Diagram                   | 3 – 6            |
| System Module                             | 3 – 7            |
| External and Internal Connectors          | 3 – 7            |
| System Connector Contacts                 | 3 – 8            |
| RF Connector Contacts                     | 3 – 9            |
| Supply Voltages and Power Consumtion      | 3 – 9            |
| Functional Description                    | 3 – 9            |
| Baseband Module                           | 3 – 10           |
| Block Diagram                             | 3 – 10           |
| Technical Summary                         | 3 – 10           |
| Bottom Connector External Contacts        | 3 – 12           |
| Bottom Connector Signals                  | 3 – 12           |
| Battery Connector                         | 3 – 14           |
| SIM Card Connector                        | 3 – 15           |
| Internal Microphone                       | 3 – 15           |
| Infrared Module Connections               | 3 – 15           |
| RTC Backup Battery                        | 3 – 16           |
| Buzzer                                    | 3 – 16           |
| Functional Description                    | 3 – 17           |
| Power Distribution                        | 3 – 17           |
| Battery charging                          | 3 – 18           |
| Startup Charging                          | 3 – 18           |
| Battery Overvoltage Protection            | 3 – 19           |
| Battery Removal During Charging           | 3 – 20           |
| Different PWM Frequencies (1Hz and 32 Hz) | 3 – 21           |
| Battery Identification                    | 3 – 22           |
| Battery Temperature                       |                  |
| Supply Voltage Regulators                 | 3 – 23<br>3 – 25 |
| Switched Mode Supply VSIM                 | 3 – 25<br>3 – 25 |
| Power Up<br>Power up with a charger       | 3 – 25           |
| Power Up With The Power Switch (PWRONX)   | 3 – 20           |
| Power Up by RTC                           | 3 – 20           |
| Power Up by IBI                           | 3 – 27           |
| Acting Dead                               | 3 – 27           |
| Active Mode                               | 3 – 27           |
| Sleep Mode                                | 3 – 27           |
| Charging                                  | 3 – 27           |
| Power Off                                 | 3 – 28           |
| Watchdog                                  | 3 – 28           |
|                                           | 0 20             |

# System Module

| Audio control                    | 3 – 29 |
|----------------------------------|--------|
| External Audio Connections       | 3 – 30 |
| Analog Audio Accessory Detection | 3 – 31 |
| Headset Detection                | 3 – 31 |
| Internal Audio Connections       | 3 – 32 |
| 4-wire PCM Serial Interface      | 3 – 32 |
| Alert Signal Generation          | 3 – 33 |
| Digital Control                  | 3 – 33 |
| MAD2                             | 3 – 33 |
| Memories                         | 3 – 43 |
| Program Memory                   | 3 – 43 |
| SRAM Memory                      | 3 – 43 |
| EEPROM Memory                    | 3 – 43 |
| MCU Memory Map                   | 3 – 44 |
| Flash Programming                | 3 – 44 |
| COBBA–GJ                         | 3 – 44 |
| Infrared Transceiver Module      | 3 – 45 |
| Real Time Clock                  | 3 – 45 |
| RTC backup battery charging      | 3 – 46 |
| Vibra Alerting Device            | 3 – 46 |
| IBI Accessories                  | 3 – 47 |
| Phone Power–on by IBI            | 3 – 47 |
| IBI power–on by phone            | 3 – 47 |
| RF Module                        | 3 – 48 |
| Maximum Ratings                  | 3 – 48 |
| RF Frequency Plan                | 3 – 48 |
| Power Distribution Diagram       | 3 – 49 |
| DC Characteristics               | 3 – 50 |
| Regulators                       | 3 – 50 |
| Control Signals                  | 3 – 50 |
| Functional Description           | 3 – 50 |
| Frequency synthesizers           | 3 – 50 |
| Receiver                         | 3 – 52 |
| Transmitter                      | 3 – 53 |
| AGC strategy                     | 3 – 55 |
| AFC function                     | 3 – 56 |
| Receiver blocks                  | 3 – 56 |
| RX interstage filter             | 3 – 56 |
| 1st mixer in CRFU_1a             | 3 – 56 |
| 1st IF-filter                    | 3 – 56 |

| Transmitter Blocks                         | 3 – 57 |
|--------------------------------------------|--------|
| TX interstage filter                       | 3 – 57 |
| Power amplifier MMIC                       | 3 – 57 |
| Synthesizer blocks                         | 3 – 57 |
| VHF VCO and low pass filter                | 3 – 57 |
| UHF PLL                                    | 3 – 57 |
| UHF PLL block in PLUSSA                    | 3 – 57 |
| UHF VCO module                             | 3 – 58 |
| UHF local signal input in CRFU_1a          | 3 – 58 |
| Connections                                | 3 – 58 |
| RF connector and antenna switch            | 3 – 58 |
| Timings                                    | 3 – 61 |
| Synthesizer control timing                 | 3 – 61 |
| Transmitter power switching timing diagram | 3 – 63 |
| Synthesizer clocking                       | 3 – 63 |
| Block Diagram of Baseband Blocks           | 3 – 64 |
| Parts list of UP8T (EDMS Issue 11.10)      | 3 – 65 |
|                                            |        |

# Schematic Diagrams:

| Block Diagram of System/RF Blocks                     | 3/A3-1 |
|-------------------------------------------------------|--------|
| Circuit Diagram of Baseband (Version 12 Edit 8)       | 3/A3-2 |
| Circuit Diagram of Power Supply (Version 14 Edit 41)  | 3/A3-3 |
| Circuit Diagram of SIM Connectors (Version 14 Edit 9) | 3/A3-4 |
| Circuit Diagram of CPU Block (Version 14 Edit 23)     | 3/A3–5 |
| Circuit Diagram of Audio (Version 14 Edit 27)         | 3/A3–6 |
| Circuit Diagram of IR Module (Version 14 Edit 21)     | 3/A3-7 |
| Circuit Diagram of RF Block (Version 14 Edit 26)      | 3/A3-8 |
| Layout Diagram of UPT8T (Version 14)                  | 3/A3-9 |
|                                                       |        |

# Transceiver NSE-3

# Introduction

The NSE–3 is a radio transceiver unit designed for the GSM network. It is a GSM phase 2 power class 4 transceiver providing 15 power levels with a maximum output power of 2 W. The transceiver is a true 3 V transceiver.

The transceiver consists of System/RF module (UP8T), User interface module (UE4) and assembly parts.

The transceiver has full graphic display and two soft key based user interface.

The antenna is a fixed helix. External antenna connection is provided by rear RF connector

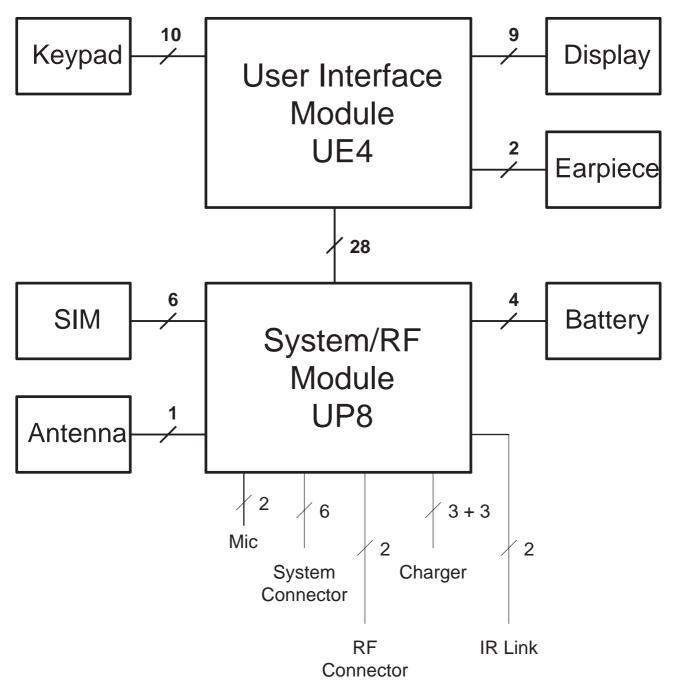
#### **Functional Description**

There are five different operation modes:

- power off mode
- idle mode
- active mode
- charge mode
- local mode

In the power off mode only the circuits needed for power up are supplied.

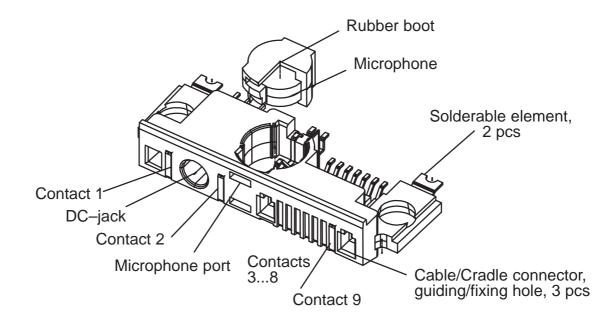
In the idle mode circuits are powered down and only sleep clock is running.


In the active mode all the circuits are supplied with power although some parts might be in the idle state part of the time.

The charge mode is effective in parallel with all previous modes. The charge mode itself consists of two different states, i.e. the charge and the maintenance mode.

The local mode is used for alignment and testing.

PAMS


# Interconnection Diagram



System Module

# **System Module**

## **External and Internal Connectors**



#### System Connector Contacts

| Con-<br>tact | Line<br>Sym-<br>bol | Parameter                                 | Mini-<br>mum | Typical<br>/ Nomi-<br>nal | Maxi-<br>mum | Unit / Notes                                                         |
|--------------|---------------------|-------------------------------------------|--------------|---------------------------|--------------|----------------------------------------------------------------------|
| 1            | VIN                 | Charger input volt-                       | 7.1          | 8.4                       | 9.3          | V/ Unloaded ACP-9 Charger                                            |
|              |                     | age                                       | 720          | 800                       | 850          | mA/ Supply current                                                   |
|              |                     | Charger input cur-                        | 7.24         | 7.6                       | 16.0         | V/ Unloaded ACP–7 Charger                                            |
|              |                     | rent                                      | 320          | 370                       | 420          | mA/ Supply current                                                   |
| DC–<br>JACK  | L_GND               | Charger ground input                      | 0            | 0                         | 0            | V/ Supply ground                                                     |
| DC-          | VIN                 | Charger input volt-                       | 7.1          | 8.4                       | 9.3          | V/ Unloaded ACP-9 Charger                                            |
| JACK         |                     | age                                       | 720          | 800                       | 850          | mA/ Supply current                                                   |
|              |                     | Charger input cur-                        | 7.24         | 7.6                       | 16.0         | V/ Unloaded ACP–7 Charger                                            |
|              |                     | rent                                      | 320          | 370                       | 420          | mA/ Supply current                                                   |
| DC–<br>JACK  | CHRG<br>CTRL        | Output high volt-<br>age                  | 2.0          | 32                        | 2.8          | V/ Charger control (PWM)<br>high<br>Hz /PWM frequency for            |
|              |                     | PWM frequency<br>output low voltage       | 0            |                           | 0.5          | charger<br>V                                                         |
| 2            | CHRG<br>CTRL        | Output high volt-<br>age<br>PWM frequency | 2.0          | 32                        | 2.8          | V/ Charger control (PWM)<br>high<br>Hz /PWM frequency for<br>charger |
| Mic<br>ports |                     | Acoustic signal                           | N/A          | N/A                       | N/A          | Microphone sound ports                                               |
| 3            | XMIC                | Input signal volt-<br>age                 |              | 60                        | 1 Vpp        | mVrms                                                                |
| 4            | SGND                | Signal ground                             | 0            |                           | 0            | mVrms                                                                |
| 5            | XEAR                | Output signal volt-<br>age                |              | 80                        | 1 Vpp        | mVrms                                                                |
| 6            | MBUS                | I/O low voltage                           | 0            |                           | 0.8          | Serial bidirectional control                                         |
|              |                     | I/O high voltage                          | 2.0          |                           | 2.8          | bus.<br>Baud rate 9600 Bit/s                                         |
| 7            | FBUS_               | Input low voltage                         | 0            |                           | 0.8          | V/ Fbus receive.                                                     |
|              | RX                  | Input high voltage                        | 2.0          |                           | 2.8          | V/ Serial Data, Baud rate<br>9.6k–230.4kBit/s                        |
| 8            | FBUS_               | Output low voltage                        | 0            |                           | 0.8          | V/ Fbus transmit.                                                    |
|              | ТХ                  | Output high volt-<br>age                  | 2.0          |                           | 2.8          | V/ Serial Data, Baud rate<br>9.6k–230.4kBit/s                        |
| 9            | L_GND               | Charger ground input                      | 0            | 0                         | 0            | V/ Supply ground                                                     |

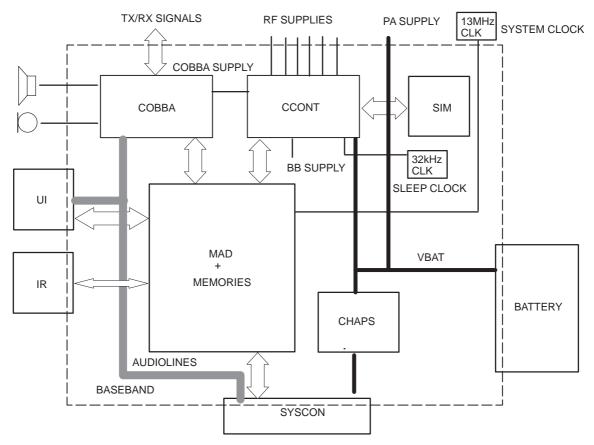
#### **RF Connector Contacts**

| Con-<br>tact | Line<br>Symbol | Parameter | Mini-<br>mum | Typical<br>/ Nomi-<br>nal | Maxi-<br>mum | Unit / Notes             |
|--------------|----------------|-----------|--------------|---------------------------|--------------|--------------------------|
| 1            | EXT_ANT        | Impedance |              | 50ohm                     |              | External antenna connec- |
| 2            | GND            | Impedance |              | 5001111                   |              | tor,<br>0 V DC           |

#### **Supply Voltages and Power Consumtion**

| Connector | Line Symbol | Minimum | Typical /<br>Nominal | Maximum/<br>Peak | Unit / Notes                   |
|-----------|-------------|---------|----------------------|------------------|--------------------------------|
| Charging  | VIN         | 7.1     | 8.4                  | 9.3              | V/ Travel charger,<br>ACP-9    |
| Charging  | VIN         | 7.25    | 7.6                  | 16.0             | V/ Travel charger.<br>ACP–7    |
| Charging  | I / VIN     | 720     | 800                  | 850              | mA/ Travel char-<br>ger, ACP–9 |
| Charging  | I / VIN     | 320     | 370                  | 420              | mA/ Travel char-<br>ger, ACP–7 |

# **Functional Description**


The transceiver electronics consist of the Radio Module ie. RF + System blocks, the UI PCB, the display module and audio components. The keypad and the display module are connected to the Radio Module with a connectors. System blocks and RF blocks are interconnected with PCB wiring. The Transceiver is connected to accessories via a bottom system connector with charging and accessory control.

The System blocks provide the MCU, DSP and Logic control functions in MAD ASIC, external memories, audio processing and RF control hardware in COBBA ASIC. Power supply circuitry CCONT ASIC delivers operating voltages both for the System and the RF blocks.

The RF block is designed for a handportable phone which operates in the GSM system. The purpose of the RF block is to receive and demodulate the radio frequency signal from the base station and to transmit a modulated RF signal to the base station. The PLUSSA ASIC is used for VHF and PLL functions. The CRFU ASIC is used at the front end.

# **Baseband Module**

# **Block Diagram**



#### **Technical Summary**

The baseband module consists of four asics, CHAPS, CCONT, COBBA–GJ and MAD2, which take care of the baseband functions of NSE–3.

The baseband is running from a 2.8V power rail, which is supplied by a power controlling asic. In the CCONT asic there are 6 individually controlled regulator outputs for RF-section and two outputs for the baseband. In addition there is one +5V power supply output (V5V) for flash programming voltage and other purposes where a higher voltage is needed. The CCONT contains also a SIM interface, which supports both 3V and 5V SIM-cards. A real time clock function is integrated into the CCONT, which utilizes the same 32kHz clock supply as the sleep clock. A backup power supply is provided for the RTC, which keeps the real time clock running when the main battery is removed. The backup power supply is a rechargable polyacene battery. The backup time with this battery is minimum of ten minutes.

The interface between the baseband and the RF section is handled by a specific asic. The COBBA asic provides A/D and D/A conversion of the in–phase and quadrature receive and transmit signal paths and also A/D and D/A conversions of received and transmitted audio signals to and from the UI section. The COBBA supplies the analog TXC and AFC signals to rf section according to the MAD DSP digital control and converts analog AGC into digital signal for the DSP. Data transmission between the COBBA and the MAD is implemented using a parallel connection for high speed signalling and a serial connection for PCM coded audio signals. Digital speech processing is handled by the MAD asic. The COBBA asic is a dual voltage circuit, the digital parts are running from the baseband supply VBB and the analog parts are running from the analog supply VCOBBA.

The baseband supports three external microphone inputs and two external earphone outputs. The inputs can be taken from an internal microphone, a headset microphone or from an external microphone signal source. The microphone signals from different sources are connected to separate inputs at the COBBA asic.

The output for the internal earphone is a dual ended type output capable of driving a dynamic type speaker. Input and output signal source selection and gain control is performed inside the COBBA asic according to control messages from the MAD. Keypad tones, DTMF, and other audio tones are generated and encoded by the MAD and transmitted to the COBBA for decoding. A buzzer and an external vibra alert control signals are generated by the MAD with separate PWM outputs.

EMC shieding is implemented using a metallized plastic B-cover with a conductive rubber seal on the ribs. On the other side the engine is shielded with a frame having a conductive rubber on the inner walls, which makes a contact to a ground ring of the engine board and a ground plane of the UI-board. Heat generated by the circuitry will be conducted out via the PCB ground planes.

System Module

#### **Bottom Connector External Contacts**

| Contact                                     | Line Symbol | Function                                             |
|---------------------------------------------|-------------|------------------------------------------------------|
| 1                                           | VIN         | Charger input voltage                                |
| DC–jack<br>side contact<br>(DC–plug ring)   | L_GND       | Charger ground                                       |
| DC–jack<br>center pin                       | VIN         | Charger input voltage                                |
| DC–jack<br>side contact<br>(DC–plug jacket) | CHRG_CTRL   | Charger control output (from phone)                  |
| 2                                           | CHRG_CTRL   | Charger control output (from phone)                  |
| Microphone<br>acoustic ports                |             | Acoustic signal (to phone)                           |
| 3                                           | XMIC        | Accessory microphone signal input (to phone)         |
| 4                                           | SGND        | Accessory signal ground                              |
| 5                                           | XEAR        | Accessory earphone signal output (from phone)        |
| 6                                           | MBUS        | MBUS, bidirectional serial data i/o                  |
| 7                                           | FBUS_RX     | FBUS, unidirectional serial data input (to phone)    |
| 8                                           | FBUS_TX     | FBUS, unidirectional serial data output (from phone) |
| 9                                           | L_GND       | Charger ground                                       |

# **Bottom Connector Signals**

| Pin | Name  | Min  | Тур | Max  | Unit | Notes                               |
|-----|-------|------|-----|------|------|-------------------------------------|
| 1,3 | VIN   | 7.25 | 7.6 | 7.95 | V    | Unloaded ACP–7 Charger (5kohms      |
|     |       |      |     | 16.9 | V    | load)                               |
|     |       | 3.25 | 3.6 | 3.95 | V    | Peak output voltage (5kohms load)   |
|     |       | 320  | 370 | 420  | mA   | Loaded output voltage (10ohms load) |
|     |       |      |     |      |      | Supply current                      |
|     |       | 7.1  | 8.4 | 9.3  | V    | Unloaded ACP–9 Charger              |
|     |       | 3.25 | 3.6 | 3.95 | V    | Loaded output voltage (10ohms load) |
|     |       | 720  | 800 | 850  | mA   | Supply current                      |
| 2   | L_GND | 0    |     | 0    | V    | Supply ground                       |
| 4,5 | CHRG_ | 0    |     | 0.5  | V    | Charger control PWM low             |
|     | CTRL  | 2.0  |     | 2.85 | V    | Charger control PWM high            |
|     |       |      | 32  |      | Hz   | PWM frequency for a fast charger    |
|     |       | 1    |     | 99   | %    | PWM duty cycle                      |
| 6   | MICP  |      | N/A |      |      | see section Internal microphone     |
| 7   | MICN  |      | N/A |      |      | see section Internal microphone     |

System Module

| Pin | Name    | Min  | Тур        | Max  | Unit | Notes                                                            |
|-----|---------|------|------------|------|------|------------------------------------------------------------------|
| 8   | XMIC    | 2.0  |            | 2.2  | kΩ   | Input AC impedance                                               |
|     |         |      |            | 1    | Vpp  | Maximum signal level                                             |
|     |         | 1.47 |            | 1.55 | V    | Mute (output DC level)                                           |
|     |         | 2.5  |            | 2.85 | V    | Unmute (output DC level)                                         |
|     |         | 100  |            | 600  | μA   | Bias current                                                     |
|     |         |      | 58         | 490  | mV   | Maximum signal level                                             |
|     | HMIC    | 0    | 3.2        | 29.3 | mV   | Microphone signal                                                |
|     |         |      |            |      |      | Connected to COBBA MIC3P input                                   |
| 9   | SGND    |      | 47         |      | Ω    | Output AC impedance (ref. GND)                                   |
|     |         |      | 10         |      | μF   | Series output capacitance                                        |
|     |         |      | 380        |      | Ω    | Resistance to phone ground                                       |
| 10  | XEAR    |      | 47         |      | Ω    | Output AC impedance (ref. GND)                                   |
|     |         |      | 10         |      | μF   | Series output capacitance                                        |
|     |         | 16   |            | 300  | Ω    | Load AC impedance to SGND (Head-<br>set)                         |
|     |         | 4.7  | 10         |      | kΩ   | Load AC impedance to SGND (Accessory)                            |
|     |         |      | 1.0        |      | Vpp  | Maximum output level (no load)                                   |
|     |         |      | 22         | 626  | mV   | Output signal level                                              |
|     |         |      | 10         |      | kΩ   | Load DC resistance to SGND (Accessory)                           |
|     |         | 16   |            | 1500 | Ω    | Load DC resistance to SGND (Head-<br>set)                        |
|     |         |      | 2.8        |      | V    | DC voltage (47k pull–up to VBB)                                  |
|     | HEAR    |      | 28         | 626  | mV   | Earphone signal (HF– HFCM)                                       |
|     |         |      |            |      |      | Connected to COBBA HF output                                     |
| 11  | MBUS    | 0    | logic low  | 0.8  | V    | Serial bidirectional control bus.                                |
|     |         | 2.0  | logic high | 2.85 |      | Baud rate 9600 Bit/s<br>Phone has a 4k7 pullup resistor          |
| 12  | FBUS_RX | 0    | logic low  | 0.8  | V    | Fbus receive. Serial Data                                        |
|     |         | 2.0  | logic high | 2.85 |      | Baud rate 9.6k–230.4kBit/s<br>Phone has a 220k pulldown resistor |
| 13  | FBUS_TX | 0    | logic low  | 0.5  | V    | Fbus transmit. Serial Data                                       |
|     |         | 2.0  | logic high | 2.85 |      | Baud rate 9.6k–230.4kBit/s<br>Phone has a 47k pullup resistor    |
| 14  | GND     | 0    |            | 0.3  | V    | Supply ground                                                    |

#### **Battery Connector**

| Pin | Name  | Min | Тур | Max  | Unit | Notes                                                                                                                                                       |
|-----|-------|-----|-----|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | BVOLT | 3.0 | 3.6 | 4.5  | V    | Battery voltage                                                                                                                                             |
|     |       |     |     | 5.0  |      | Maximum voltage in call state with charger                                                                                                                  |
|     |       |     |     | 5.3  |      | Maximum voltage in idle state with charger                                                                                                                  |
| 2   | BSI   | 0   |     | 2.85 | V    | Battery size indication<br>Phone has 100kohm pull up resistor.                                                                                              |
|     |       |     |     |      |      | SIM Card removal detection<br>(Treshold is 2.4V@VBB=2.8V)                                                                                                   |
|     |       | 2.2 |     | 18   | kohm | Battery indication resistor (Ni battery)                                                                                                                    |
|     |       | 20  | 22  | 24   | kohm | Battery indication resistor (service battery)                                                                                                               |
|     |       | 27  |     | 51   | kohm | Battery indication resistor (4.1V Lithium battery)                                                                                                          |
|     |       | 68  |     | 91   | kohm | Battery indication resistor (4.2V Lithium bat-<br>tery)                                                                                                     |
| 3   | BTEMP | 0   |     | 1.4  | V    | Battery temperature indication<br>Phone has a 100k (+–5%) pullup resistor,<br>Battery package has a NTC pulldown resis-<br>tor:<br>47k+–5%@+25C, B=4050+–3% |
|     |       | 2.1 |     | 3    | V    | Phone power up by battery (input)                                                                                                                           |
|     |       | 5   | 10  | 20   | ms   | Power up pulse width                                                                                                                                        |
|     |       | 1.9 |     | 2.85 | V    | Battery power up by phone (output)                                                                                                                          |
|     |       | 90  | 100 | 200  | ms   | Power up pulse width                                                                                                                                        |
|     |       | 0   |     | 1    | kohm | Local mode initialization (in production)                                                                                                                   |
|     |       | 20  | 22  | 25   | kHz  | PWM control to VIBRA BATTERY                                                                                                                                |
| 4   | BGND  | 0   |     | 0    | V    | Battery ground                                                                                                                                              |

System Module

#### **SIM Card Connector**

| Pin  | Name   | Parameter   | Min | Тур  | Max  | Unit | Notes               |
|------|--------|-------------|-----|------|------|------|---------------------|
| 4    | GND    | GND         | 0   |      | 0    | V    | Ground              |
| 3, 5 | VSIM   | 5V SIM Card | 4.8 | 5.0  | 5.2  | V    | Supply voltage      |
|      |        | 3V SIM Card | 2.8 | 3.0  | 3.2  |      |                     |
| 6    | DATA   | 5V Vin/Vout | 4.0 | "1"  | VSIM | V    | SIM data            |
|      |        |             | 0   | "0"  | 0.5  |      | Trise/Tfall max 1us |
|      |        | 3V Vin/Vout | 2.8 | "1"  | VSIM |      |                     |
|      |        |             | 0   | "0"  | 0.5  |      |                     |
| 2    | SIMRST | 5V SIM Card | 4.0 | "1"  | VSIM | V    | SIM reset           |
|      |        | 3V SIM Card | 2.8 | "1"  | VSIM |      |                     |
|      |        |             |     |      |      |      |                     |
| 1    | SIMCLK | Frequency   |     | 3.25 |      | MHz  | SIM clock           |
|      |        | Trise/Tfall |     |      | 25   | ns   |                     |

#### **Internal Microphone**

| Pin | Name | Min | Тур  | Max | Unit | Notes                                                                                                                                                                       |
|-----|------|-----|------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6   | MICP |     | 0.55 | 4.1 | mV   | Connected to COBBA MIC2N input. The maximum value corresponds to1 kHz, 0 dBmO network level with input amplifier gain set to 32 dB. typical value is maximum value – 16 dB. |
| 7   | MICN |     | 0.55 | 4.1 | mV   | Connected to COBBA MIC2P input. The maximum value corresponds to1 kHz, 0 dBmO network level with input amplifier gain set to 32 dB. typical value is maximum value – 16 dB. |

#### **Infrared Module Connections**

An infrared transceiver module is designed to substitute an electrical cable between the phone and a PC. The infrared transceiver module is a stand alone component capable to perform infrared transmitting and receiving functions by transforming signals transmitted in infrared light from and to electrical data pulses running in two wire asyncronous databus. In DCT3 the module is placed inside the phone at the top of the phone.

| Signal  | Parameter             | Min | Тур | Max  | Unit | Notes    |
|---------|-----------------------|-----|-----|------|------|----------|
| IRON    | IRON IR–module on/off |     |     | 2.85 | V    | lout@2mA |
| FBUS_RX | _RX IR receive pulse  |     |     | 0.8  | V    |          |
|         | IR receive no pulse   | 2.0 |     | 2.85 | V    |          |
| FBUS_TX | IR transmit pulse     | 2.0 |     | 2.85 | V    | lout@2mA |
|         | IR transmit no pulse  | 0   |     | 0.5  | V    |          |

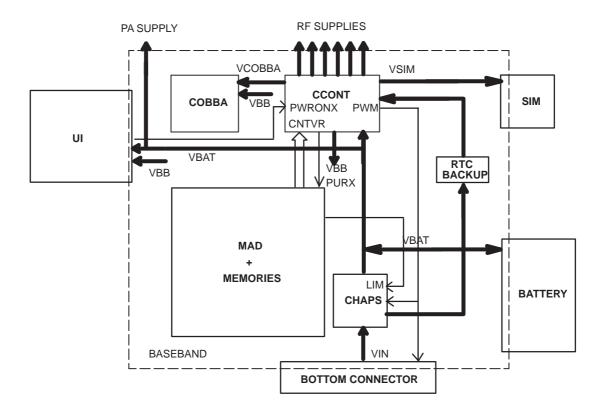
#### **RTC Backup Battery**

The RTC block in CCONT needs a power backup to keep the clock running when the phone battery is disconnected. The backup power is supplied from a rechargable polyacene battery that can keep the clock running minimum of 10 minutes. The backup battery is charged from the main battery through CHAPS.

| Signal | Parameter                               | Min  | Тур  | Max  | Unit | Notes                     |
|--------|-----------------------------------------|------|------|------|------|---------------------------|
| VBACK  | Backup battery charg-<br>ing from CHAPS | 3.02 | 3.15 | 3.28 | V    |                           |
|        | Backup battery charg-<br>ing from CHAPS | 100  | 200  | 500  | uA   | Vout@VBAT-0.2V            |
| VBACK  | Backup battery supply to CCONT          | 2    |      | 3.28 | V    | Battery capacity<br>65uAh |
|        | Backup battery supply to CCONT          |      | 80   |      | uA   |                           |

#### Buzzer

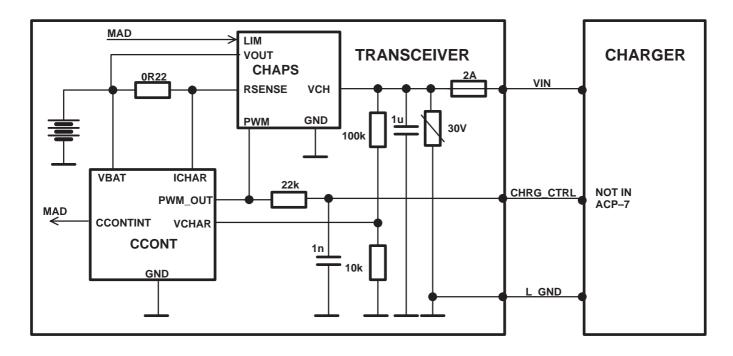
| Signal              | Maximum<br>output cur-<br>rent | Input<br>high level | Input<br>Iow level | Level (PWM)<br>range, %     | Frequency<br>range, Hz |
|---------------------|--------------------------------|---------------------|--------------------|-----------------------------|------------------------|
| BuzzPWM /<br>BUZZER | 2mA                            | 2.5V                | 0.2V               | 050 (128 lin-<br>ear steps) | 4404700                |


# **Functional Description**

#### **Power Distribution**

In normal operation the baseband is powered from the phone's battery. The battery consists of one Lithium–Ion cell. There is also a possibility to use batteries consisting of three Nickel Metal Hydride cells. An external charger can be used for recharging the battery and supplying power to the phone. The charger can be either a standard charger that can deliver around 400 mA or so called performance charger, which can deliver supply current up to 850 mA.

The baseband contains components that control power distribution to whole phone excluding those parts that use continuous battery supply. The battery feeds power directly to three parts of the system: CCONT, power amplifier, and UI (buzzer and display and keyboard lights). Figure 4 shows a block diagram of the power distribution.


The power management circuit CHAPS provides protection agains overvoltages, charger failures and pirate chargers etc. that would otherwise cause damage to the phone.



#### System Module

#### **Battery charging**

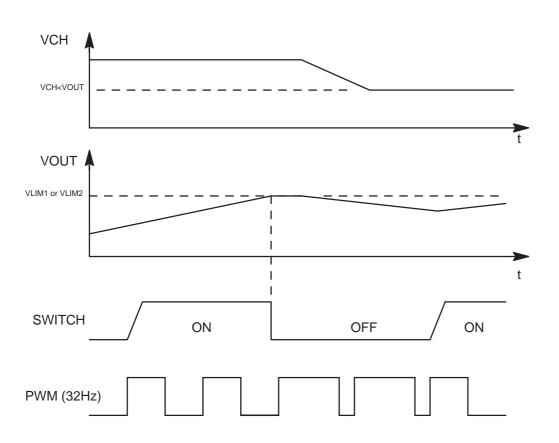
The electrical specifications give the idle voltages produced by the acceptable chargers at the DC connector input. The absolute maximum input voltage is 30V due to the transient suppressor that is protecting the charger input. At phone end there is no difference between a plug–in charger or a desktop charger. The DC–jack pins and bottom connector charging pads are connected together inside the phone.



#### **Startup Charging**

When a charger is connected, the CHAPS is supplying a startup current minimum of 130mA to the phone. The startup current provides initial charging to a phone with an empty battery. Startup circuit charges the battery until the battery voltage level is reaches 3.0V (+/– 0.1V) and the CCONT releases the PURX reset signal and program execution starts. Charging mode is changed from startup charging to PWM charging that is controlled by the MCU software. If the battery voltage reaches 3.55V (3.75V maximum) before the program has taken control over the charging, the startup current is switched off. The startup current is switched on again when the battery voltage is sunken 100mV (nominal).

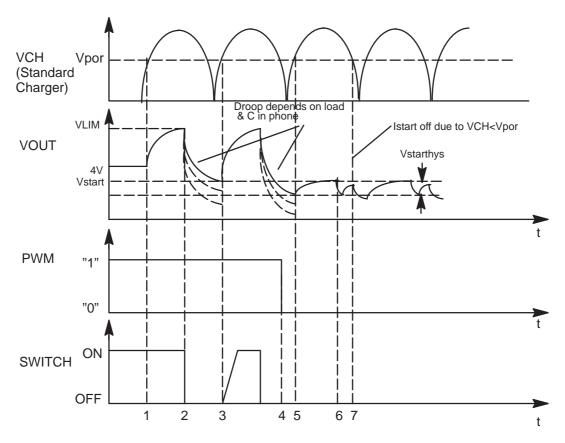
| Parameter                                             | Symbol    | Min  | Тур  | Мах  | Unit |
|-------------------------------------------------------|-----------|------|------|------|------|
| VOUT Start- up mode cutoff limit                      | Vstart    | 3.45 | 3.55 | 3.75 | V    |
| VOUT Start– up mode hysteresis<br>NOTE: Cout = 4.7 uF | Vstarthys | 80   | 100  | 200  | mV   |
| Start–up regulator output current<br>VOUT = 0V Vstart | Istart    | 130  | 165  | 200  | mA   |


## **Battery Overvoltage Protection**

Output overvoltage protection is used to protect phone from damage. This function is also used to define the protection cutoff voltage for different battery types (Li or Ni). The power switch is immediately turned OFF if the voltage in VOUT rises above the selected limit VLIM1 or VLIM2.

| Parameter                                                              | Symbol | LIM input | Min | Тур | Мах | Unit |
|------------------------------------------------------------------------|--------|-----------|-----|-----|-----|------|
| Output voltage cutoff limit<br>(during transmission or Li–<br>battery) | VLIM1  | LOW       | 4.4 | 4.6 | 4.8 | V    |
| Output voltage cutoff limit<br>(no transmission or Ni–bat-<br>tery)    | VLIM2  | HIGH      | 4.8 | 5.0 | 5.2 | V    |

The voltage limit (VLIM1 or VLIM2) is selected by logic LOW or logic HIGH on the CHAPS (N101) LIM– input pin. Default value is lower limit VLIM1.


When the switch in output overvoltage situation has once turned OFF, it stays OFF until the the battery voltage falls below VLIM1 (or VLIM2) and PWM = LOW is detected. The switch can be turned on again by setting PWM = HIGH.

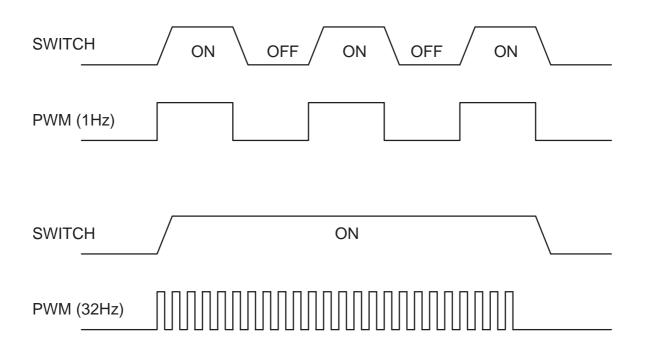


#### **Battery Removal During Charging**

Output overvoltage protection is also needed in case the main battery is removed when charger connected or charger is connected before the battery is connected to the phone.

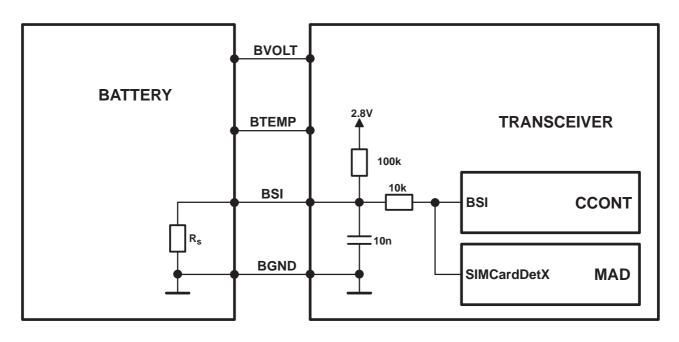
With a charger connected, if VOUT exceeds VLIM1 (or VLIM2), CHAPS turns switch OFF until the charger input has sunken below Vpor (nominal 3.0V, maximum 3.4V). MCU software will stop the charging (turn off PWM) when it detects that battery has been removed. The CHAPS remains in protection state as long as PWM stays HIGH after the output overvoltage situation has occured.



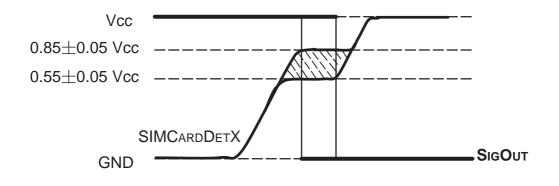

- 1. Battery removed, (standard) charger connected, VOUT rises (follows charger voltage)
- 2. VOUT exceeds limit VLIM(X), switch is turned immediately OFF
- VOUT falls (because no battery), also VCH<Vpor (standard chargers full-rectified output). When VCH > Vpor and VOUT < VLIM(X) -> switch turned on again (also PWM is still HIGH) and VOUT again exceeds VLIM(X).
- 4. Software sets PWM = LOW -> CHAPS does not enter PWM mode
- 5. PWM low -> Startup mode, startup current flows until Vstart limit reached
- 6. VOUT exceeds limit Vstart, Istart is turned off
- 7. VCH falls below Vpor

System Module

#### Different PWM Frequencies (1Hz and 32 Hz)

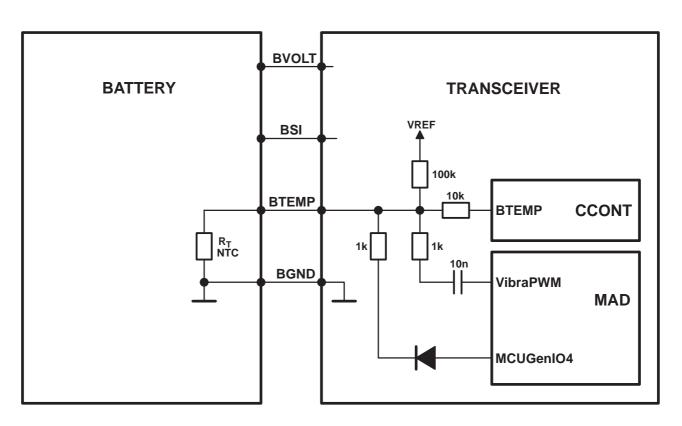

When a travel charger (2– wire charger) is used, the power switch is turned ON and OFF by the PWM input when the PWM rate is 1Hz. When PWM is HIGH, the switch is ON and the output current lout = charger current – CHAPS supply current. When PWM is LOW, the switch is OFF and the output current lout = 0. To prevent the switching transients inducing noise in audio circuitry of the phone soft switching is used.

The performance travel charger (3– wire charger) is controlled with PWM at a frequency of 32Hz. When the PWM rate is 32Hz CHAPS keeps the power switch continuously in the ON state.




#### **Battery Identification**

Different battery types are identified by a pulldown resistor inside the battery pack. The BSI line inside transceiver has a 100k pullup to VBB. The MCU can identify the battery by reading the BSI line DC–voltage level with a CCONT (N100) A/D–converter.




The battery identification line is used also for battery removal detection. The BSI line is connected to a SIMCardDetX line of MAD2 (D200). SIM-CardDetX is a threshold detector with a nominal input switching level 0.85xVcc for a rising edge and 0.55xVcc for a falling edge. The battery removal detection is used as a trigger to power down the SIM card before the power is lost. The BSI contact in the battery pack is made 0.7mm shorter than the supply voltage contacts so that there is a delay between battery removal detection and supply power off,



#### **Battery Temperature**

The battery temperature is measured with a NTC inside the battery pack. The BTEMP line inside transceiver has a 100k pullup to VREF. The MCU can calculate the battery temperature by reading the BTEMP line DC–voltage level with a CCONT (N100) A/D–converter.



#### **Supply Voltage Regulators**

The heart of the power distrubution is the CCONT. It includes all the voltage regulators and feeds the power to the whole system. The baseband digital parts are powered from the VBB regulator which provides 2.8V baseband supply. The baseband regulator is active always when the phone is powered on. The VBB baseband regulator feeds MAD and memories, COBBA digital parts and the LCD driver in the UI section. There is a separate regulator for a SIM card. The regulator is selectable between 3V and 5V and controlled by the SIMPwr line from MAD to CCONT. The COBBA analog parts are powered from a dedicated 2.8V supply VCOB-BA. The CCONT supplies also 5V for RF and for flash VPP. The CCONT contains a real time clock function, which is powered from a RTC backup when the main battery is disconnected. The RTC backup is rechargable polyacene battery, which has a capacity of 50uAh (@3V/2V) The battery is charged from the main battery voltage by the CHAPS when the main battery voltage is over 3.2V. The charging current is 200uA (nominal).

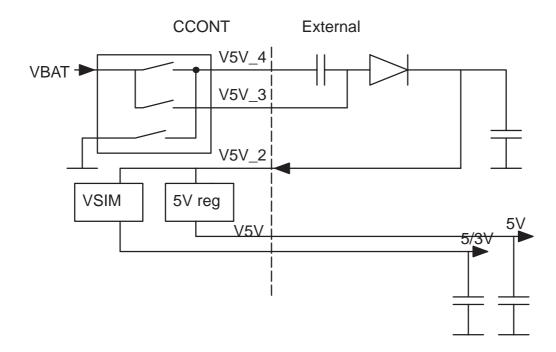
| Operating mode | Vref | RF REG        | VCOB-<br>BA | VBB | VSIM | SIMIF        |
|----------------|------|---------------|-------------|-----|------|--------------|
| Power off      | Off  | Off           | Off         | Off | Off  | Pull<br>down |
| Power on       | On   | On/Off        | On          | On  | On   | On/Off       |
| Reset          | On   | Off<br>VR1 On | On          | On  | Off  | Pull<br>down |
| Sleep          | On   | Off           | On          | On  | On   | On/Off       |

#### NOTE:

CCONT includes also five additional 2.8V regulators providing power to the RF section. These regulators can be controlled either by the direct control signals from MAD or by the RF regulator control register in CCONT which MAD can update. Below are the listed the MAD control lines and the regulators they are controlling.

- TxPwr controls VTX regulator (VR5)
- RxPwr controls VRX regulator (VR2)
- SynthPwr controls VSYN\_1 and VSYN\_2 regulators (VR4 and VR3)
- VCXOPwr controls VXO regulator (VR1)

CCONT generates also a 1.5 V reference voltage VREF to COBBA, PLUSSA and CRFU. The VREF voltage is also used as a reference to some of the CCONT A/D converters.


In additon to the above mentioned signals MAD includes also TXP control signal which goes to PLUSSA power control block and to the power amplifier. The transmitter power control TXC is led from COBBA to PLUSSA.

#### Switched Mode Supply VSIM

There is a switched mode supply for SIM–interface. SIM voltage is selected via serial IO. The 5V SMR can be switched on independently of the SIM voltage selection, but can't be switched off when VSIM voltage value is set to 5V.

NOTE: VSIM and V5V can give together a total of 30mA.

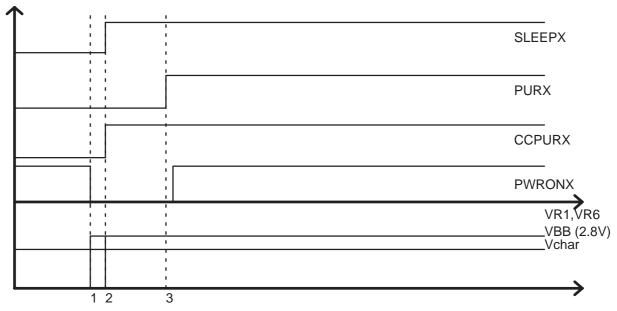
In the next figure the principle of the SMR / VSIM-functions is shown.



#### Power Up

The baseband is powered up by:

- 6. Pressing the power key, that generates a PWRONX interrupt signal from the power key to the CCONT, which starts the power up procedure.
- 7. Connecting a charger to the phone. The CCONT recognizes the charger from the VCHAR voltage and starts the power up procedure.
- 8. A RTC interrupt. If the real time clock is set to alarm and the phone is switched off, the RTC generates an interrupt signal, when the alarm is gone off. The RTC interrupt signal is connected to the PWRONX line to give a power on signal to the CCONT just like the power key.
- 9. A battery interrupt. Intelligent battery packs have a possibility to power up the phone. When the battery gives a short (10ms) voltage pulse through the BTEMP pin, the CCONT wakes up and starts the power on procedure.


#### Power up with a charger

When the charger is connected CCONT will switch on the CCONT digital voltage as soon as the battery voltage exceeds 3.0V. The reset for CCONT's digital parts is released when the operating voltage is stabilized (50 us from switching on the voltages). Operating voltage for VCXO is also switched on. The counter in CCONT digital section will keep MAD in reset for 62 ms (PURX) to make sure that the clock provided by VCXO is stable. After this delay MAD reset is relased, and VCXO –control (SLEEPX) is given to MAD. The diagram assumes empty battery, but the situation would be the same with full battery:

When the phone is powered up with an empty battery pack using the standard charger, the charger may not supply enough current for standard powerup procedure and the powerup must be delayed.

#### Power Up With The Power Switch (PWRONX)

When the power on switch is pressed the PWRONX signal will go low. CCONT will switch on the CCONT digital section and VCXO as was the case with the charger driven power up. If PWRONX is low when the 64 ms delay expires, PURX is released and SLEEPX control goes to MAD. If PWRONX is not low when 64 ms expires, PURX will not be released, and CCONT will go to power off ( digital section will send power off signal to analog parts)



1:Power switch pressed ==> Digital voltages on in CCONT (VBB)

2: CCONT digital reset released. VCXO turned on

3: 62 ms delay to see if power switch is still pressed.

#### Power Up by RTC

RTC (internal in CCONT) can power the phone up by changing RTCPwr to logical "1". RTCPwr is an internal signal from the CCONT digital section.

#### Power Up by IBI

IBI can power CCONT up by sending a short pulse to logical "1". RTCPwr is an internal signal from the CCONT digital section.

#### Acting Dead

If the phone is off when the charger is connected, the phone is powered on but enters a state called "acting dead". To the user the phone acts as if it was switched off. A battery charging alert is given and/or a battery charging indication on the display is shown to acknowledge the user that the battery is being charged.

#### Active Mode

In the active mode the phone is in normal operation, scanning for channels, listening to a base station, transmitting and processing information. All the CCONT regulators are operating. There are several substates in the active mode depending on if the phone is in burst reception, burst transmission, if DSP is working etc..

#### **Sleep Mode**

In the sleep mode, all the regulators except the baseband VBB, VCOBBA, and the SIM card VSIM regulators are off. Sleep mode is activated by the MAD after MCU and DSP clocks have been switched off. The voltage regulators for the RF section are switched off and the VCXO power control, VCXOPwr is set low. In this state only the 32 kHz sleep clock oscillator in CCONT is running. The flash memory power down input is connected to the ExtSysResetX signal, and the flash is deep powered down during the sleep mode.

The sleep mode is exited either by the expiration of a sleep clock counter in the MAD or by some external interrupt, generated by a charger connection, key press, headset connection etc. The MAD starts the wake up sequence and sets the VCXOPwr and ExtSysResetX control high. After VCXO settling time other regulators and clocks are enabled for active mode.

If the battery pack is disconnect during the sleep mode, the CCONT pulls the SIM interface lines low as there is no time to wake up the MCU.

#### Charging

Charging can be performed in any operating mode. The charging algorithm is dependent on the used battery technology. The battery type is inSystem Module

dicated by a resistor inside the battery pack. The resistor value corresponds to a specific battery capacity. This capacity value is related to the battery technology as different capacity values are achieved by using different battery technology.

The battery voltage, temperature, size and current are measured by the CCONT controlled by the charging software running in the MAD.

The power management circuitry controls the charging current delivered from the charger to the battery. Charging is controlled with a PWM input signal, generated by the CCONT. The PWM pulse width is controlled by the MAD and sent to the CCONT through a serial data bus. The battery voltage rise is limited by turning the CHAPS switch off when the battery voltage has reached 4.2V (Lilon) or 5.2V (NiMH, 5V in call mode). Charging current is monitored by measuring the voltage drop across a 220mohm resistor.

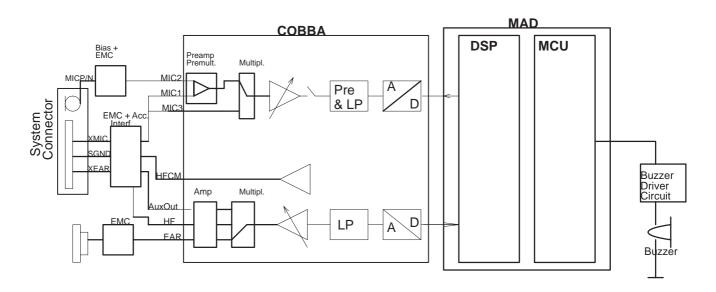
#### **Power Off**

The baseband is powered down by:

- 1. Pressing the power key, that is monitored by the MAD, which starts the power down procedure.
- 2. If the battery voltage is dropped below the operation limit, either by not charging it or by removing the battery.
- 3. Letting the CCONT watchdog expire, which switches off all CCONT regulators and the phone is powered down.
- 4. Setting the real time clock to power off the phone by a timer. The RTC generates an interrupt signal, when the alarm is gone off. The RTC interrupt signal is connected to the PWRONX line to give a power off signal to the CCONT just like the power key.

The power down is controlled by the MAD. When the power key has been pressed long enough or the battery voltage is dropped below the limit the MCU initiates a power down procedure and disconnects the SIM power. Then the MCU outputs a system reset signal and resets the DSP. If there is no charger connected the MCU writes a short delay to CCONT watchdog and resets itself. After the set delay the CCONT watchdog expires, which activates the PURX and all regulators are switched off and the phone is powered down by the CCONT.

If a charger is connected when the power key is pressed the phone enters into the acting dead mode.


#### Watchdog

The Watchdog block inside CCONT contains a watchdog counter and some additional logic which are used for controlling the power on and power off procedures of CCONT. Watchdog output is disabled when WDDisX pin is tied low. The WD-counter runs during that time, though. Watchdog counter is reset internally to 32s at power up. Normally it is reset by MAD writing a control word to the WDReg.

System Module

## **Audio control**

The audio control and processing is taken care by the COBBA–GJ, which contains the audio and RF codecs, and the MAD2, which contains the MCU, ASIC and DSP blocks handling and processing the audio signals. A detailed audio specification can be found from document



The baseband supports three microphone inputs and two earphone outputs. The inputs can be taken from an internal microphone, a headset microphone or from an external microphone signal source. The microphone signals from different sources are connected to separate inputs at the COBBA–GJ asic. Inputs for the microphone signals are differential type.

The MIC1 inputs are used for a headset microphone that can be connected directly to the system connector. The internal microphone is connected to MIC2 inputs and an external pre–amplified microphone (handset/handfree) signal is connected to the MIC3 inputs. In COBBA there are also three audio signal outputs of which dual ended EAR lines are used for internal earpiece and HF line for accessory audio output. The third audio output AUXOUT is used only for bias supply to the headset microphone. As a difference to DCT2 generation the SGND (= HFCM at COB-BA) does not supply audio signal (only common mode). Therefore there are no electrical loopback echo from downlink to uplink.

The output for the internal earphone is a dual ended type output capable of driving a dynamic type speaker. The output for the external accessory and the headset is single ended with a dedicated signal ground SGND. Input and output signal source selection and gain control is performed inside the COBBA–GJ asic according to control messages from the MAD2. Keypad tones, DTMF, and other audio tones are generated and encoded by the MAD2 and transmitted to the COBBA–GJ for decoding.

PAMS

#### **External Audio Connections**

The external audio connections are presented in figure 16. A headset can be connected directly to the system connector. The headset microphone bias is supplied from COBBA AUXOUT output and fed to microphone through XMIC line. The 330ohm resistor from SGND line to AGND provides a return path for the bias current.



#### Analog Audio Accessory Detection

In XEAR signal there is a 47 k $\Omega$  pullup in the transceiver and 6.8 k $\Omega$  pull–down to SGND in accessory. The XEAR is pulled down when an accessory is connected, and pulled up when disconnected. The XEAR is connected to the HookDet line (in MAD), an interrupt is given due to both connection and disconnection. There is filtering between XEAR and HookDet to prevent audio signal giving unwanted interrupts.

External accessory notices powered–up phone by detecting voltage in XMIC line. In Table 23 there is a truth table for detection signals.

| Accessory connected                              | HookDet | HeadDet | Notes                      |
|--------------------------------------------------|---------|---------|----------------------------|
| No accessory connected                           | High    | High    | Pullups in the transceiver |
| Headset HDC–9 with a button switch pressed       | Low     | Low     | XEAR and XMIC loaded (dc)  |
| Headset HDC–9 with a button switch re-<br>leased | High    | Low *)  | XEAR unloaded (dc)         |
| Handsfree (HFU-1)                                | Low     | High    | XEAR loaded (dc)           |

#### **Headset Detection**

The external headset device is connected to the system connector, from which the signals are routed to COBBA headset microphone inputs and earphone outputs. In the XMIC line there is a (47 + 2.2) k $\Omega$  pullup in the transceiver. The microphone is a low resistance pulldown compared to the transceiver pullup.

When there is no call going, the AUXOUT is in high impedance state and the XMIC is pulled up. When a headset is connected, the XMIC is pulled down. The XMIC is connected to the HeadDet line (in MAD), an interrupt is given due to both connection and disconnection. There is filtering between the XMIC and the HeadDet to prevent audio signal giving unwanted interrupts (when an accessory is connected).

In the XEAR line there is a 47 k $\Omega$  pullup in the transceiver. The earphone is a low resistance pulldown compared to the transceiver pullup. When a remote control switch is open, there is a capacitor in series with the earphone, so the XEAR (and HookDet) is pulled up by the phone. When the switch is closed, the XEAR (and HookDet) is pulled down via the earphone. So both press and release of the button gives an interrupt.

During a call there is a bias voltage (1.5 V) in the AUXOUT, and the HeadDet cannot be used. The headset interrupts should to be disabled during a call and the EAD line (AD converter in CCONT) should be polled to see if the headset is disconnected.

System Module

#### **Internal Audio Connections**

The speech coding functions are performed by the DSP in the MAD2 and the coded speech blocks are transferred to the COBBA–GJ for digital to analog conversion, down link direction. In the up link direction the PCM coded speech blocks are read from the COBBA–GJ by the DSP.

There are two separate interfaces between MAD2 and COBBA–GJ: a parallel bus and a serial bus. The parallel bus has 12 data bits, 4 address bits, read and write strobes and a data available strobe. The parallel interface is used to transfer all the COBBA–GJ control information (both the RFI part and the audio part) and the transmit and receive samples. The serial interface between MAD2 and COBBA–GJ includes transmit and receive data, clock and frame synchronisation signals. It is used to transfer the PCM samples. The frame synchronisation frequency is 8 kHz which indicates the rate of the PCM samples and the clock frequency is 1 MHz. COBBA is generating both clocks.

#### 4-wire PCM Serial Interface

The interface consists of following signals: a PCM codec master clock (PCMDClk), a frame synchronization signal to DSP (PCMSClk), a codec transmit data line (PCMTX) and a codec receive data line (PCMRX). The COBBA–GJ generates the PCMDClk clock, which is supplied to DSP SIO. The COBBA–GJ also generates the PCMSClk signal to DSP by dividing the PCMDClk. The PCMDClk frequency is 1.000 MHz and is generated by dividing the RFIClk 13 MHz by 13. The COBBA–GJ further divides the PCMDClk by 125 to get a PCMSClk signal, 8.0 kHz.

|           |                         | _// |
|-----------|-------------------------|-----|
|           |                         | -// |
| PCMTxData | sign extended MSB / / / | //  |
| PCMRxData | sign extended MSB       | _// |

#### **Alert Signal Generation**

A buzzer is used for giving alerting tones and/or melodies as a signal of an incoming call. Also keypress and user function response beeps are generated with the buzzer. The buzzer is controlled with a BuzzerPWM output signal from the MAD. A dynamic type of buzzer must be used since the supply voltage available can not produce the required sound pressure for a piezo type buzzer. The low impedance buzzer is connected to an output transistor that gets drive current from the PWM output. The alert volume can be adjusted either by changing the pulse width causing the level to change or by changing the frequency to utilize the resonance frequency range of the buzzer.

A vibra alerting device is used for giving silent signal to the user of an incoming call. The device is controlled with a VibraPWM output signal from the MAD2. The vibra alert can be adjusted either by changing the pulse width or by changing the pulse frequency. The vibra device is not inside the phone, but in a special vibra battery.

#### **Digital Control**

The baseband functions are controlled by the MAD asic, which consists of a MCU, a system ASIC and a DSP.

#### MAD2

MAD2 contains following building blocks:

- ARM RISC processor with both 16–bit instruction set (THUMB mode) and 32–bit instruction set (ARM mode)
- TI Lead DSP core with peripherials:
  - API (Arm Port Interface memory) for MCU–DSP communication, DSP code download, MCU interrupt handling vectors (in DSP RAM) and DSP booting
  - Serial port (connection to PCM)
  - Timer
  - DSP memory
- BUSC (BusController for controlling accesses from ARM to API, System Logic and MCU external memories, both 8– and 16–bit memories)
- System Logic
  - CTSI (Clock, Timing, Sleep and Interrupt control)
  - MCUIF (Interface to ARM via BusC). Contains MCU BootROM
  - DSPIF (Interface to DSP)
  - MFI (Interface to COBBA AD/DA Converters)

- CODER (Block encoding/decoding and A51&A52 ciphering)
- AccIF(Accessory Interface)
- SCU (Synthesizer Control Unit for controlling 2 separate synthesizer)
- UIF (Keyboard interface, serial control interface for COBBA PCM Codec, LCD Driver and CCONT)
- SIMI (SimCard interface with enhanched features)
- PUP (Parallel IO, USART and PWM control unit for vibra and buzzer)

The MAD2 operates from a 13 MHz system clock, which is generated from the 13Mhz VCXO frequency. The MAD2 supplies a 6,5MHz or a 13MHz internal clock for the MCU and system logic blocks and a 13MHz clock for the DSP, where it is multiplied to 52 MHz DSP clock. The system clock can be stopped for a system sleep mode by disabling the VCXO supply power from the CCONT regulator output. The CCONT provides a 32kHz sleep clock for internal use and to the MAD2, which is used for the sleep mode timing. The sleep clock is active when there is a battery voltage available i.e. always when the battery is connected.

| Pin<br>N:o | Pin Name   | Pin<br>Type | Connected<br>to/from | Drive<br>req.<br>mA | Reset<br>State | Note                               | Explanation                           |
|------------|------------|-------------|----------------------|---------------------|----------------|------------------------------------|---------------------------------------|
| 1          | MCUGenOut5 | 0           | Audio                | 2                   | 0              |                                    | MCU General<br>purpose output<br>port |
| 2          | MCUGenOut4 | 0           | N101                 | 2                   | 0              |                                    | MCU General<br>purpose output<br>port |
| 3          | LEADGND    |             |                      |                     |                |                                    | Lead Ground                           |
| 4          | MCUGenOut3 | 0           |                      | 2                   | 0              |                                    | MCU General<br>purpose output<br>port |
| 5          | VCC        |             |                      |                     |                | IO VCC in<br>3325c10               | Power                                 |
| 6          | MCUGenOut2 | 0           |                      | 2                   | 0              |                                    | MCU General<br>purpose output<br>port |
| 7          | MCUGenOut1 | 0           | MCU<br>memory        | 2                   | 0              |                                    | MCU General<br>purpose output<br>port |
| 8          | MCUGenOut0 | 0           |                      | 2                   | 1              | LoByteSelX<br>in 16–bit<br>mode    | MCU General<br>purpose output<br>port |
| 9          | Col4       | I/O         | UIF                  | 2                   | Input          | program-<br>mable pullup<br>PR0201 | I/O line for key-<br>board column 4   |

System Module

| Pin<br>N:o | Pin Name  | Pin<br>Type | Connected<br>to/from | Drive<br>req.<br>mA | Reset<br>State   | Note                               | Explanation                                                                                                                     |
|------------|-----------|-------------|----------------------|---------------------|------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 10         | Col3      | I/O         | UIF                  | 2                   | Input            | program-<br>mable pullup<br>PR0201 | I/O line for key-<br>board column 3                                                                                             |
| 11         | GND       |             |                      |                     |                  |                                    | Ground                                                                                                                          |
| 12         | Col2      | I/O         | UIF                  | 2                   | Input            | program-<br>mable pullup<br>PR0201 | I/O line for key-<br>board column 2                                                                                             |
| 13         | Col1      | I/O         | UIF                  | 2                   | Input            | program-<br>mable pullup<br>PR0201 | I/O line for key-<br>board column 1                                                                                             |
| 14         | Col0      | I/O         | UIF                  | 2                   | Input            | program-<br>mable pullup<br>PR0201 | I/O line for key-<br>board column 0                                                                                             |
| 15         | LCDCSX    | I/O         | UIF                  | 2                   | Input            | external<br>pullup/down            | serial LCD driver<br>chip select, par-<br>allel LCD driver<br>enable                                                            |
| 16         | LEADVCC   |             |                      |                     |                  |                                    | Lead Power                                                                                                                      |
| 17         | Row5LCDCD | I/O         | UIF                  | 2                   | Input,<br>pullup | pullup<br>PR0201                   | Keyboard row5<br>data I/O , serial<br>LCD driver com-<br>mand/data indi-<br>cator, parallel<br>LCD driver read/<br>write select |
| 18         | VCC       |             |                      |                     |                  | Core VCC in 3325c10                | Power                                                                                                                           |
| 19         | Row4      | I/O         | UIF                  | 2                   | Input,<br>pullup | pullup<br>PR0201                   | I/O line for key-<br>board row 4, par-<br>allel LCD driver<br>register selection<br>control                                     |
| 20         | Row3      | I/O         | UIF                  | 2                   | Input,<br>pullup | pullup<br>PR0201                   | I/O line for key-<br>board row 3, par-<br>allel LCD driver<br>data                                                              |
| 21         | Row2      | I/O         | UIF                  | 2                   | Input,<br>pullup | pullup<br>PR0201                   | I/O line for key-<br>board row 2, par-<br>allel LCD driver<br>data                                                              |
| 22         | Row1      | I/O         | UIF                  | 2                   | Input,<br>pullup | pullup<br>PR0201                   | I/O line for key-<br>board row 1, par-<br>allel LCD driver<br>data                                                              |
| 23         | Row0      | I/O         | UIF                  | 2                   | Input,<br>pullup | pullup<br>PR0201                   | I/O line for key-<br>board row 0, par-<br>allel LCD driver<br>data                                                              |

# PAMS

System Module

**Technical Documentation** 

| Pin<br>N:o | Pin Name  | Pin<br>Type | Connected<br>to/from | Drive<br>req.<br>mA | Reset<br>State          | Note                 | Explanation                 |
|------------|-----------|-------------|----------------------|---------------------|-------------------------|----------------------|-----------------------------|
| 24         | JTDO      | 0           |                      | 2                   | Tri–<br>state           |                      | JTAG data out               |
| 25         | GND       |             |                      |                     |                         |                      | Ground                      |
| 26         | JTRst     | I           |                      |                     | Input,<br>pull-<br>down | pulldown<br>PD0201   | JTAG reset                  |
| 27         | JTClk     | I           |                      |                     | Input                   | pulldown<br>PD0201   | JTAG Clock                  |
| 28         | JTDI      | Ι           |                      |                     | Input,<br>pullup        | pullup<br>PR0201     | JTAG data in                |
| 29         | JTMS      | I           |                      |                     | Input,<br>pullup        | pullup<br>PR0201     | JTAG mode se-<br>lect       |
| 30         | VCC       |             |                      |                     |                         | IO VCC in<br>3325c10 | Power                       |
| 31         | CoEmu0    | I/O         |                      | 2                   | Input,<br>pullup        | pullup<br>PR0201     | DSP/MCU<br>emulation port 0 |
| 32         | CoEmu1    | I/O         |                      | 2                   | Input,<br>pullup        | pullup<br>PR0201     | DSP/MCU<br>emulation port 1 |
| 33         | MCUGenIO7 | I/O         |                      | 2                   | Input,<br>pull-<br>down | pulldown<br>PD1001   | General purpose<br>I/O port |
| 34         | MCUGenIO6 | I/O         | UI                   | 2                   | Input,<br>pull-<br>down | pulldown<br>PD1001   | Lights                      |
| 35         | LEADGND   |             |                      |                     |                         |                      | Lead Ground                 |
| 36         | MCUGenIO5 | I/O         | UI                   | 2                   | lnput,<br>pull-<br>down | pulldown<br>PD1001   | LCD reset                   |
| 37         | ARMGND    |             |                      |                     |                         |                      | ARM Ground                  |
| 38         | MCUAd0    | 0           | MCU<br>MEMORY        | 2                   | 0                       |                      | MCU address<br>bus          |
| 39         | ARMVCC    |             |                      |                     |                         |                      | ARM Power                   |
| 40         | MCUAd1    | 0           | MCU<br>MEMORY        | 2                   | 0                       |                      | MCU address<br>bus          |
| 41         | MCUAd2    | 0           | MCU<br>MEMORY        | 2                   | 0                       |                      | MCU address<br>bus          |
| 42         | GND       |             |                      |                     |                         |                      | Ground                      |
| 43         | MCUAd3    | 0           | MCU<br>MEMORY        | 2                   | 0                       |                      | MCU address<br>bus          |
| 44         | MCUAd4    | 0           | MCU<br>MEMORY        | 2                   | 0                       |                      | MCU address<br>bus          |
| 45         | MCUAd5    | 0           | MCU<br>MEMORY        | 2                   | 0                       |                      | MCU address<br>bus          |

| Pin<br>N:o | Pin Name  | Pin<br>Type | Connected<br>to/from | Drive<br>req.<br>mA | Reset<br>State | Note                 | Explanation        |
|------------|-----------|-------------|----------------------|---------------------|----------------|----------------------|--------------------|
| 46         | MCUAd6    | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 47         | VCC       |             |                      |                     |                | IO VCC in<br>3325c10 | Power              |
| 48         | MCUAd7    | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 49         | MCUAd8    | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 50         | MCUAd9    | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 51         | MCUAd10   | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 52         | GND       |             |                      |                     |                |                      | Ground             |
| 53         | MCUAd11   | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 54         | MCUAd12   | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 55         | MCUAd13   | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 56         | MCUAd14   | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 57         | MCUAd15   | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 58         | MCUAd16   | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 59         | VCC       |             |                      |                     |                | Core VCC in 3325c10  | Power              |
| 60         | MCUAd17   | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 61         | MCUAd18   | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 62         | MCUAd19   | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 63         | MCUAd20   | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 64         | MCUAd21   | 0           | MCU<br>MEMORY        | 2                   | 0              |                      | MCU address<br>bus |
| 65         | ExtMCUDa0 | I/O         | MCU<br>MEMORY        | 2                   | Input          |                      | MCU data bus       |
| 66         | GND       |             |                      |                     |                |                      | Ground             |
| 67         | ExtMCUDa1 | I/O         | MCU<br>MEMORY        | 2                   | Output         |                      | MCU data bus       |
| 68         | ExtMCUDa2 | I/O         | MCU<br>MEMORY        | 2                   | Output         |                      | MCU data bus       |

## PAMS

| Pin<br>N:o | Pin Name   | Pin<br>Type | Connected<br>to/from | Drive<br>req.<br>mA | Reset<br>State   | Note                       | Explanation                                                   |
|------------|------------|-------------|----------------------|---------------------|------------------|----------------------------|---------------------------------------------------------------|
| 69         | ExtMCUDa3  | I/O         | MCU<br>MEMORY        | 2                   | Output           |                            | MCU data bus                                                  |
| 70         | ExtMCUDa4  | I/O         | MCU<br>MEMORY        | 2                   | Output           |                            | MCU data bus                                                  |
| 71         | ExtMCUDa5  | I/O         | MCU<br>MEMORY        | 2                   | Output           |                            | MCU data bus                                                  |
| 72         | ExtMCUDa6  | I/O         | MCU<br>MEMORY        | 2                   | Output           |                            | MCU data bus                                                  |
| 73         | VCC        |             |                      |                     |                  | IO VCC in<br>3325c10       | Power                                                         |
| 74         | ExtMCUDa7  | I/O         | MCU<br>MEMORY        | 2                   | Output           |                            | MCU data bus                                                  |
| 75         | MCUGenIO8  | I/O         |                      | 2                   | Input            | MCU Data in<br>16–bit mode | General purpose<br>I/O port                                   |
| 76         | MCUGenIO9  | I/O         |                      | 2                   | Input            | MCU Data in<br>16–bit mode | General purpose<br>I/O port                                   |
| 77         | MCUGenIO10 | I/O         |                      | 2                   | Input            | MCU Data in<br>16–bit mode | General purpose<br>I/O port                                   |
| 78         | MCUGenIO11 | I/O         |                      | 2                   | Input            | MCU Data in<br>16–bit mode | General purpose<br>I/O port                                   |
| 79         | GND        |             |                      |                     |                  |                            | Ground                                                        |
| 80         | MCUGenIO12 | I/O         |                      | 2                   | Input            | MCU Data in<br>16–bit mode | General purpose<br>I/O port                                   |
| 81         | MCUGenIO13 | I/O         |                      | 2                   | Input            | MCU Data in<br>16–bit mode | General purpose<br>I/O port                                   |
| 82         | MCUGenIO14 | I/O         |                      | 2                   | Input            | MCU Data in<br>16–bit mode | General purpose<br>I/O port                                   |
| 83         | MCUGenIO15 | I/O         |                      | 2                   | Input            | MCU Data in<br>16–bit mode | General purpose<br>I/O port                                   |
| 84         | MCURdX     | 0           | MCU<br>MEMORY        | 2                   | 1                |                            | MCU Read<br>strobe                                            |
| 85         | VCC        |             |                      |                     |                  | Core VCC in<br>3325c10     | Power                                                         |
| 86         | MCUWrX     | 0           | MCU<br>MEMORY        | 2                   | 1                |                            | MCU write<br>strobe                                           |
| 87         | ROM1SelX   | 0           | MCU ROM              | 2                   | 1                |                            | ROM chip select                                               |
| 88         | RAMSelX    | 0           | MCU RAM              | 2                   | 1                |                            | RAM chip select                                               |
| 89         | ROM2SelX   | 0           | MCU ROM2             | 2                   | 1                |                            | Extra chip select,<br>can be used as<br>MCU general<br>output |
| 90         | MCUGenIO1  | I/O         |                      | 2                   | Input,<br>pullup | pullup<br>PR0201           | General purpose<br>I/O port                                   |
| 91         | DSPXF      | 0           |                      | 2                   | 1                |                            | External flag                                                 |

| Pin<br>N:o | Pin Name    | Pin<br>Type | Connected<br>to/from | Drive<br>req.<br>mA | Reset<br>State          | Note                 | Explanation                                                    |
|------------|-------------|-------------|----------------------|---------------------|-------------------------|----------------------|----------------------------------------------------------------|
| 92         | SCVCC       |             |                      |                     |                         |                      | Special cell Pow-<br>er                                        |
| 93         | RFClk       | I           | VCXO                 |                     | Input                   |                      | System clock<br>from VCTCXO                                    |
| 94         | RFClkGnd    |             |                      |                     | Input                   |                      | System clock<br>reference ground<br>input                      |
| 95         | SIMCardDetX | I           |                      |                     | Input                   |                      | SIM card detec-<br>tion                                        |
| 96         | SCGND       |             |                      |                     |                         |                      | Special cell<br>Ground                                         |
| 97         | BuzzPWM     | 0           | BUZZER               | 2                   | 0                       |                      | Buzzer PWM<br>control                                          |
| 98         | LEADVCC     |             |                      |                     |                         |                      | LEAD Power                                                     |
| 99         | VibraPWM    | 0           | VIBRA                | 2                   | 0                       |                      | Vibra PWM con-<br>trol                                         |
| 100        | GND         |             |                      |                     |                         |                      | Ground                                                         |
| 101        | MCUGenIO3   | I/O         | EEPROM               | 2                   | Input,<br>pullup        | pullup<br>PR1001     | General purpose<br>I/O port                                    |
| 102        | MCUGenIO2   | I/O         | EEPROM               | 2                   | Input,<br>pullup        | pullup<br>PR1001     | WP SCL                                                         |
| 103        | EEPROMSelX  | 0           | MCU EE-<br>PROM      | 2                   | 1                       |                      | EEPROM chip<br>select, can be<br>used as MCU<br>general output |
| 104        | AccTxData   | I/O         |                      | 4                   | Tri–<br>State           | external<br>pullup   | Accessory TX<br>data, Flash_TX                                 |
| 105        | VCC         |             |                      |                     |                         | IO VCC in<br>3325c10 | Power                                                          |
| 106        | GenDet      | I           |                      |                     | Input                   |                      | General purpose<br>interrupt                                   |
| 107        | HookDet     | I           |                      |                     | Input                   |                      | Non–MBUS ac-<br>cessory connec-<br>tion detector               |
| 108        | HeadDet     | I           |                      |                     | Input                   |                      | Headset detec-<br>tion interrupt                               |
| 109        | AccRxData   | I           |                      |                     | Input                   |                      | Accessory RX<br>data, Flash_RX                                 |
| 110        | GND         |             |                      |                     |                         |                      | Ground                                                         |
| 111        | MCUGenIO4   | I/O         |                      | 2                   | Input,<br>pull-<br>down | pulldown<br>PD1001   | General purpose<br>I/O port                                    |

## PAMS

## NSE-3

## System Module

**Technical Documentation** 

| Pin<br>N:o | Pin Name     | Pin<br>Type | Connected<br>to/from | Drive<br>req.<br>mA | Reset<br>State                             | Note                                                      | Explanation                        |
|------------|--------------|-------------|----------------------|---------------------|--------------------------------------------|-----------------------------------------------------------|------------------------------------|
| 112        | MBUS         | I/O         |                      | 2                   | Input,<br>exter-<br>nal<br>pullup          | external<br>pullup                                        | MBUS, Flash<br>clock               |
| 113        | VCXOPwr      | 0           | CCONT                | 2                   | 1                                          |                                                           | VCXO regulator<br>control          |
| 114        | SynthPwr     | 0           | CCONT                | 2                   | 0                                          |                                                           | Synthesizer reg-<br>ulator control |
| 115        | VCC          |             |                      |                     |                                            | Core VCC in<br>3325c10                                    | Power                              |
| 116        | GenCCONTCSX  | 0           | CCONT                | 2                   | 1                                          |                                                           | Chip select to<br>CCONT            |
| 117        | LEADGND      |             |                      |                     |                                            |                                                           | LEAD Ground                        |
| 118        | GenSDIO      | I/O         | CCONT, UIF           | 2                   | Input,<br>exter-<br>nal<br>pullup/<br>down | external<br>pullup/down<br>depending<br>on how to<br>boot | Serial data in/out                 |
| 119        | GenSClk      | 0           | CCONT, UIF           | 2                   | 0                                          |                                                           | Serial clock                       |
| 120        | SIMCardData  | I/O         | CCONT                | 2                   | 0                                          |                                                           | SIM data                           |
| 121        | GND          |             |                      |                     |                                            |                                                           | Ground                             |
| 122        | PURX         | Ι           | CCONT                |                     | Input                                      |                                                           | Power Up Reset                     |
| 123        | CCONTInt     | Ι           | CCONT                |                     | Input                                      |                                                           | CCONT interrupt                    |
| 124        | Clk32k       | I           | CCONT                |                     | Input                                      |                                                           | Sleep clock os-<br>cillator input  |
| 125        | VCC          |             |                      |                     |                                            | IO VCC in<br>3325c10                                      | Power                              |
| 126        | SIMCardClk   | 0           | CCONT                | 2                   | 0                                          |                                                           | SIM clock                          |
| 127        | SIMCardRstX  | 0           | CCONT                | 2                   | 0                                          |                                                           | SIM reset                          |
| 128        | SIMCardIOC   | 0           | CCONT                | 2                   | 0                                          |                                                           | SIM data in/out control            |
| 129        | SIMCardPwr   | 0           | CCONT                | 2                   | 0                                          |                                                           | SIM power con-<br>trol             |
| 130        | LEADVCC      |             |                      |                     |                                            |                                                           | LEAD Power                         |
| 131        | RxPwr        | 0           | CCONT                | 2                   | 0                                          |                                                           | RX regulator<br>control            |
| 132        | TxPwr        | 0           | CCONT                | 2                   | 0                                          |                                                           | TX regulator<br>control            |
| 133        | TestMode     | I           |                      |                     | Input,<br>pull-<br>down                    | pulldown<br>PD0201                                        | Test mode select                   |
| 134        | ExtSysResetX | 0           |                      | 2                   | 0                                          |                                                           | System Reset                       |

| Pin<br>N:o | Pin Name  | Pin<br>Type | Connected<br>to/from | Drive<br>req.<br>mA | Reset<br>State | Note                 | Explanation                   |
|------------|-----------|-------------|----------------------|---------------------|----------------|----------------------|-------------------------------|
| 135        | PCMTxData | 0           | COBBA                | 2                   | 0              |                      | Transmit data,<br>DX          |
| 136        | VCC       |             |                      |                     |                | IO VCC in<br>3325c10 | Power                         |
| 137        | PCMRxData | I           | СОВВА                |                     | Input          |                      | Receive data,<br>RX           |
| 138        | PCMDClk   | I           | СОВВА                |                     | Input          |                      | Transmit clock,<br>CLKX       |
| 139        | PCMSClk   | I           | СОВВА                |                     | Input          |                      | Transmitframe<br>sync, FSX    |
| 140        | COBBADAX  | I           | СОВВА                |                     | Input          |                      | Data available<br>acknowledge |
| 141        | GND       |             |                      |                     |                |                      | Ground                        |
| 142        | COBBAWrX  | 0           | СОВВА                | 2                   | 1              |                      | COBBA write<br>strobe         |
| 143        | COBBARdX  | 0           | COBBA                | 2                   | 1              |                      | COBBA read<br>strobe          |
| 144        | COBBACIk  | 0           | СОВВА                | 4                   | 1              |                      | COBBA clock,<br>13 MHz        |
| 145        | COBBAAd3  | 0           | СОВВА                | 2                   | 0              |                      | COBBA address<br>bit          |
| 146        | COBBAAd2  | 0           | COBBA                | 2                   | 0              |                      | COBBA address<br>bit          |
| 147        | COBBAAd1  | 0           | COBBA                | 2                   | 0              |                      | COBBA address<br>bit          |
| 148        | COBBAAd0  | 0           | COBBA                | 2                   | 0              |                      | COBBA address<br>bit          |
| 149        | COBBADa11 | I/O         | COBBA                | 2                   | 0              |                      | COBBA data bit                |
| 150        | VCC       |             |                      |                     |                | Core VCC in 3325c10  | Power                         |
| 151        | COBBADa10 | I/O         | COBBA                | 2                   | 0              |                      | COBBA data bit                |
| 152        | COBBADa9  | I/O         | COBBA                | 2                   | 0              |                      | COBBA data bit                |
| 153        | COBBADa8  | I/O         | COBBA                | 2                   | 0              |                      | COBBA data bit                |
| 154        | COBBADa7  | I/O         | COBBA                | 2                   | 0              |                      | COBBA data bit                |
| 155        | COBBADa6  | I/O         | COBBA                | 2                   | 0              |                      | COBBA data bit                |
| 156        | GND       |             |                      |                     |                |                      | Ground                        |
| 157        | COBBADa5  | I/O         | COBBA                | 2                   | 0              |                      | COBBA data bit                |
| 158        | COBBADa4  | I/O         | COBBA                | 2                   | 0              |                      | COBBA data bit                |
| 159        | COBBADa3  | I/O         | COBBA                | 2                   | 0              |                      | COBBA data bit                |
| 160        | COBBADa2  | I/O         | COBBA                | 2                   | 0              |                      | COBBA data bit                |
| 161        | COBBADa1  | I/O         | COBBA                | 2                   | 0              |                      | COBBA data bit                |

Pin

| N:o | Fin Name   | Туре | to/from                         | req.<br>mA | State            | NOLE                 | Explanation                                   |
|-----|------------|------|---------------------------------|------------|------------------|----------------------|-----------------------------------------------|
| 162 | COBBADa0   | I/O  | СОВВА                           | 2          | 0                |                      | COBBA data bit                                |
| 163 | DSPGenOut5 | 0    | RF                              | 2          | 0                |                      | DSP general<br>purpose output,<br>COBBA reset |
| 164 | VCC        |      |                                 |            |                  | IO VCC in<br>3325c10 | Power                                         |
| 165 | DSPGenOut4 | 0    |                                 | 2          | 0                |                      | DSP general<br>purpose output                 |
| 166 | DSPGenOut3 | 0    | IR                              | 2          | 0                |                      | IR ON                                         |
| 167 | DSPGenOut2 | 0    |                                 | 2          | 0                |                      | DSP general<br>purpose output                 |
| 168 | DSPGenOut1 | 0    |                                 | 2          | 0                |                      | DSP general<br>purpose output                 |
| 169 | DSPGenOut0 | 0    |                                 | 2          | 0                |                      | DSP general<br>purpose output                 |
| 170 | MCUGenIO0  | I/O  | EEPROM                          | 2          | Input,<br>pullup | pullup<br>PR0201     | SDA                                           |
| 171 | FrACtrl    | 0    | RF                              | 2          | 0                |                      | SDATX0                                        |
| 172 | GND        |      |                                 |            |                  |                      | Ground                                        |
| 173 | SynthEna   | 0    | PLUSSA                          | 2          | 0                |                      | Synthesizer data enable                       |
| 174 | SynthClk   | 0    | PLUSSA                          | 2          | 0                |                      | Synthesizer<br>clock                          |
| 175 | SynthData  | 0    | PLUSSA                          | 2          | 0                |                      | Synthesizer data                              |
| 176 | TxPA       | 0    | PLUSSA,<br>power ampli-<br>fier | 2          | 0                |                      | Power amplifier control                       |

Pin Name

Pin

Connected

Drive

Reset

Note

Explanation

#### Memories

The MCU program code resides in an external flash program memory, which size is 8 Mbits (512kx16bit). The MCU work (data) memory size is 512kbits (64kx8bit). A serial EEPROM is used for storing the system and tuning parameters, user settings and selections, a scratch pad and a short code memory. The EEPROM size is 64kbits (8kx8bit).

The BusController (BUSC) section in the MAD decodes the chip select signals for the external memory devices and the system logic. BUSC controls internal and external bus drivers and multiplexers connected to the MCU data bus. The MCU address space is divided into access areas with separate chip select signals. BUSC supports a programmable number of wait states for each memory range.

#### **Program Memory**

The MCU program code resides in the program memory. The program memory size is 8 Mbits (512kx16bit).

The flash memory has a power down pin that should be kept low, during the power up phase of the flash to ensure that the device is powered up in the correct state, read only. The power down pin is utilized in the system sleep mode by connecting the ExtSysResetX to the flash power down pin to minimize the flash power consumption during the sleep.

#### **SRAM Memory**

The work memory is a static ram of size 512k (64kx8) in a shrink TSOP32 package. The work memory is supplied from the common baseband VBB voltage and the memory contents are lost when the baseband voltage is switched off. All retainable data should be stored into the EEPROM (or flash) when the phone is powered down.

#### **EEPROM Memory**

An EEPROM is used for a nonvolatile data memory to store the tuning parameters and phone setup information. The short code memory for storing user defined information is also implemented in the EEPROM. The EEPROM size is 8kbytes. The memory is accessed through a serial bus and the default package is SO8.

#### MCU Memory Map

MAD2 supports maximum of 4GB internal and 4MB external address space. External memories use address lines MCUAd0 to MCUAd21 and 16–bit databus. The BUSC bus controller supports 8– and 16–bit access for byte, double byte, word and double word data. Access wait state 2 and used databus width can be selected separately for each memory block.

#### **Flash Programming**

The phone have to be connected to the flash loading adapter FLA–5 so that supply voltage for the phone and data transmission lines can be supplied from/to FLA–5. When FLA–5 switches supply voltage to the phone, the program execution starts from the BOOT ROM and the MCU investigates in the early start–up sequence if the flash prommer is connected. This is done by checking the status of the MBUS–line. Normally this line is high but when the flash prommer is connected the line is forced low by the prommer.

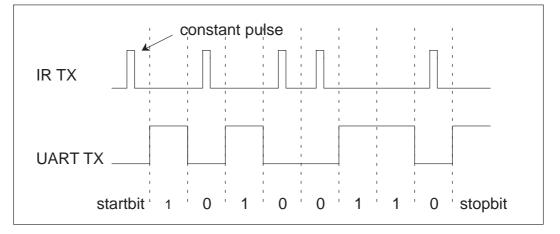
The flash prommer serial data receive line is in receive mode waiting for an acknowledgement from the phone. The data transmit line from the baseband to the prommer is initially high. When the baseband has recognized the flash prommer, the TX-line is pulled low. This acknowledgement is used to start to toggle MBUS (FCLK) line three times in order that MAD2 gets initialized. This must be happened within 15 ms after TX line is pulled low. After that the data transfer of the first two bytes from the flash prommer to the baseband on the RX-line must be done within 1 ms.

When MAD2 has received the secondary boot byte count information, it forces TX line high. Now, the secondary boot code must be sent to the phone within 10 ms per 16 bit word. If these timeout values are exceeded, the MCU (MAD2) starts normal code execution from flash. After this, the timing between the phone and the flash prommer is handled with dummy bites.

A 5V programming voltage is supplied inside the transceiver from the battery voltage with a switch mode regulator (5V/30mA) of the CCONT. The 5V is connected to VPP pin of the flash through the UI board.

#### COBBA-GJ

The COBBA–GJ provides an interface between the baseband and the RF–circuitry. COBBA–GJ performs analogue to digital conversion of the receive signal. For transmit path COBBA\_GJ performs digital to analogue conversion of the transmit amplifier power control ramp and the in–phase and quadrature signals. A slow speed digital to analogue converter will provide automatic frequency control (AFC).


The COBBA asic is at any time connected to MAD asic with two interfaces, one for transferring tx and rx data between MAD and COBBA and one for transferring codec rx/tx samples.

#### Infrared Transceiver Module

The module is activated with an IRON signal by the MAD, which supplies power to the module. The IR datalines are connected to the MAD accessory interface Acclf via FBUS. The RX and TX lines are separated from FBUS by three–state buffers, when the IR–module is switched off. The Acclf in MAD performs pulse encoding and shaping for transmitted data and detection and decoding for received data pulses.

The data is transferred over the IR link using serial data at speeds 9.6, 19.2, 38.4, 57.6 or 115.2 kbits/s, which leads to maximum throughput of 92.160 kbits/s. The used IR module complies with the IrDA 1.0 specification (Infra Red Data Association), which is based on the HP SIR (Hewlett–Packard's Serial Infra Red) consept.

Following figure gives an example of IR transmission pulses. In IR transmission a light pulse correspondes to 0-bit and a "dark pulse" correspondes to 1-bit.



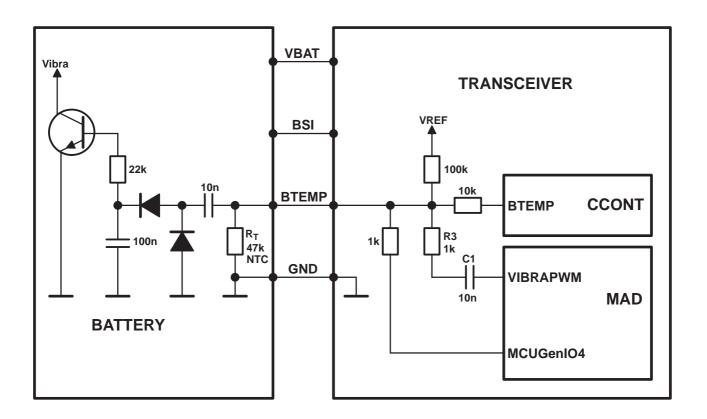
The FBUS cannot be used for external accessory communication when the infrared mode is selected, as IR communication reserves the FBUS completely.

#### **Real Time Clock**

Requirements for a real time clock implementation are a basic clock (hours and minutes), a calender and a timer with alarm and power on/off –function and miscellaneous calls. The RTC will contain only the time base and the alarm timer but all other functions (e.g. calendar) will be implemented with the MCU software. The RTC needs a power backup to keep the clock running when the phone battery is disconnected. The backup power is supplied from a rechargable polyacene battery that can keep the clock running some ten minutes. If the backup has expired, the RTC clock restarts after the main battery is connected. The CCONT keeps MCU in reset until the 32kHz source is settled (1s max).

The CCONT is an ideal place for an integrated real time clock as the asic already contains the power up/down functions and a sleep control with the 32kHz sleep clock, which is running always when the phone battery is connected. This sleep clock is used for a time source to a RTC block.

### **RTC** backup battery charging


CHAPS has a current limited voltage regulator for charging a backup battery. The regulator derives its power from VOUT so that charging can take place without the need to connect a charger. The backup battery is only used to provide power to a real time clock when VOUT is not present so it is important that power to the charging circuitry is derived from VOUT and that the charging circuitry does not present a load to the backup battery when VOUT is not present.

It should not be possible for charging current to flow from the backup battery into VOUT if VOUT happens to be lower than VBACK. Charging current will gradually diminish as the backup battery voltage reaches that of the regulation voltage.

#### Vibra Alerting Device

A vibra alerting device is used for giving silent signal to the user of an incoming call. The device is not placed in the phone but it will be added to a special battery pack. The vibra is controlled with a PWM signal by the MAD via the BTEMP battery terminal.

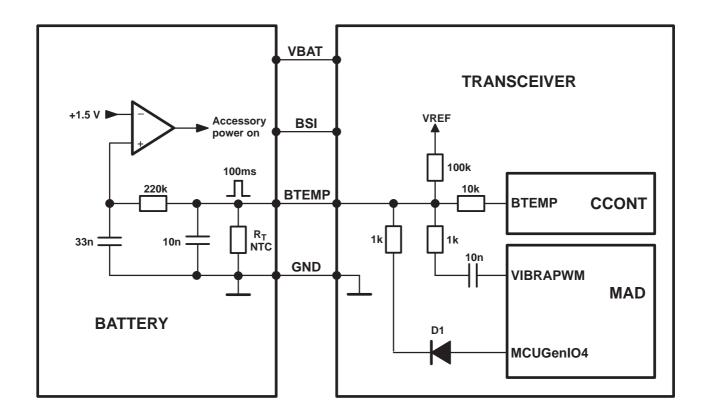
A 15kohm BSI resistor is needed to detect the vibra battery. It is only used to enable vibra selection in user menu. When alerting, VibraPWM signal is delivered to battery.



## **IBI Accessories**

All accessories which can be connected between the transceiver and the battery or which itself contain the battery, are called IBI accessories.

Either the phone or the IBI accessory can turn the other on, but both possibilities are not allowed in the same accessory.

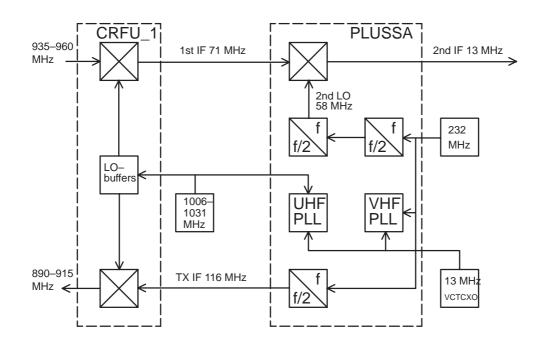

#### Phone Power-on by IBI

IBI accessory can power the phone on by pulling the BTEMP line up to 3 V.

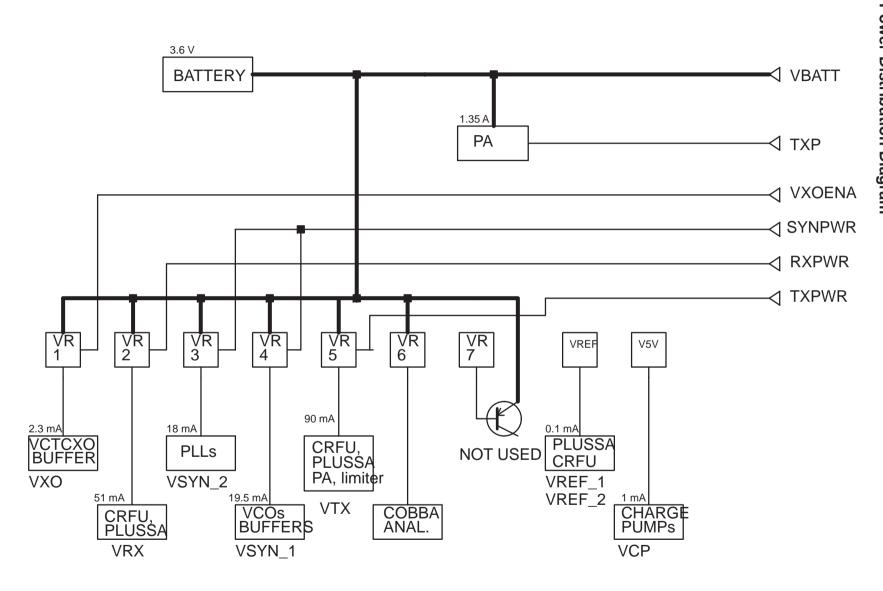
#### IBI power-on by phone

Phone can power the IBI accessory on by pulling the BTEMP line up by MCUGenIO4 of MAD2. BTEMP measurement is not possible during this time.

The accessory is commanded back to power-off by MBUS message.




# **RF Module**


## **Maximum Ratings**

| Parameter                                        | Rating         |
|--------------------------------------------------|----------------|
| Battery voltage, idle mode                       | 6.0 V          |
| Battery voltage during call, highest power level | 5.0 V          |
| Regulated supply voltage                         | 2.8 +/- 3% V   |
| Voltage reference                                | 1.5 +/- 1.5% V |
| Operating temperature range                      | –10+55 deg. C  |

# **RF Frequency Plan**







## **DC Characteristics**

### Regulators

Transceiver has got a multi function power management IC, which contains among other functions, also 7 pcs of 2.8 V regulators. All regulators can be controlled individually with 2.8 V logic directly or through control register. In GSM direct controls are used to get fast switching, because regulators are used to enable RF–functions.

Use of the regulators can be seen in the power distribution diagram.

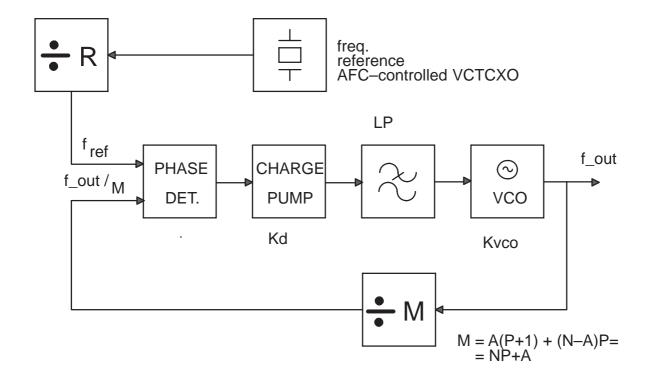
CCONT also provides 1.5 V reference voltage for PLUSSA and CRFU1a ( and for DACs and ADCs in COBBA too ).

## **Control Signals**

All control signals are coming from MAD and they are 2.8 V logic signals.

## **Functional Description**

RF block diagram has conventional dual conversion receiver and in transmitter there is a upconversion mixer for the final TX–frequency.


Architecture contains three ICs. Most of the functions are horizontally and vertically integrated. UHF functions except power amplifier and VCO are integrated into CRFU\_1a, which is a BiCMOS–circuit suitable for LNA– and mixer–function. Most of the functions are in PLUSSA, which also is a BiCMOS–circuit. PLUSSA is a IF–circuit including IQ–modulator and PLLs for VHF– and UHF–synthesizers.

Power amplifier is also an ASIC, it is a so called MMIC (monolithic microwave integrated circuit). It has three amplifier stages including input and interstage matchings. Output matching network is external. Also TX gain control is integrated into this chip.

## **Frequency synthesizers**

Both VCOs are locked with PLLs into stable frequency source (see figure 3), which is a VCTCXO–module (voltage controlled temperature compensated crystal oscillator). VCTCXO is running at 13 MHz. Temperature effect is controlled with AFC (automatic frequency control) voltage, VCTCXO is locked into frequency of the base station. AFC is generated by baseband with a 11 bit conventional DAC in COBBA.

UHF PLL is located into PLUSSA. There is 64/65 (P/P+1) prescaler, Nand A-divider, reference divider, phase detector and charge pump for the external loop filter. UHF local signal is generated by a VCO-module (VCO = voltage controlled oscillator) and sample of frequency of VCO is fed to prescaler. Prescaler is a dual modulus divider. Output of the prescaler is fed to N– and A–divider, which produce the input to phase detector. Phase detector compares this signal to reference signal, which is divided with reference divider from VCTCXO output. Output of the phase detector is connected into charge pump, which charges or discharges integrator capacitor in the loop filter depending on the phase of the measured frequency compared to reference frequency. Loop filter filters out the pulses and generates DC to control the frequency of UHF-VCO. Loop filter defines step response of the PLL ( settling time ) and effects to stability of the loop, that's why integrator capacitor has got a resistor for phase compensation. Other filter components are for sideband rejection. Dividers are controlled via serial bus. SDATA is for data, SCLK is serial clock for the bus and SENA1 is a latch enable, which stores new data into dividers. HF–synthesizer is the channel synthesizer, so the channel spacing is 200 kHz. 200 kHz is reference frequency for the phase detector.



VHF PLL is also located into PLUSSA. There is 16/17 (P/P+1) dual modulus prescaler, N– and A–dividers, reference divider, phase detector and charge pump for the loop filter. VHF local signal is generated with a discrete VCO–circuit. VHF PLL works in the same way as UHF–PLL. VHF– PLL is locked on fixed frequency, so higher reference frequency is used to decrease phase noise.

## Receiver

Receiver is a dual conversion linear receiver.

Received RF-signal from the antenna is fed via the duplex filter to LNA (low noise amplifier ) in CRFU\_1a. Active parts (RF-transistor and biasing and AGC-step circuitry ) are integrated into this chip. Input and output matching networks are external. Gain selection is done with PDATA0 control. Gain step in LNA is activated when RF-level in antenna is about -45 dBm. After the LNA amplified signal ( with low noise level ) is fed to bandpass filter, which is a SAW-filter ( SAW, surface acoustic wave ). Duplex filter and RX interstage bandpass filters together define, how good are the blocking characteristics against spurious signals outside receive band and the protection against spurious responses, mainly the image of the first mixer.

This bandpass filtered signal is then mixed down to 71 MHz, which is first intermediate frequency. 1st mixer is located into CRFU\_1a ASIC. This integrated mixer is a double balanced Gilbert cell. All active parts and biasing are integrated and matching components are external. Because this is an axtive mixer it also amplifies IF–frequency. Also local signal buffering is integrated and upper side injection is used. First local signal is generated with UHF–synthesizer.

First IF–signal is then bandpass filtered with a selective SAW–filter. From the mixer output to IF–circuit input signal path is balanced. IF–filter provides selectivity for channels greater than +/–200 kHz. Also it attenuates image frequency of the second mixer and intermodulating signals. Selectivity is required in this place, because of needed linearity and adjacent channel interferers will be on too high signal level for the stages following.

Next stage in the receiver chain is AGC–amplifier. It is integrated into PLUSSA–ASIC. AGC has analog gain control. Control voltage for the AGC is generated with DA–converter in COBBA in baseband. AGC–stage provides accurate gain control range (min. 60 dB) for the receiver. After the AGC there is second mixer, which generates second intermediate frequency, 13 MHz. Local signal is generated in PLUSSA by dividing VHF– synthesizer output (232 MHz) by four, so the 2nd LO–frequency is 58 MHz.

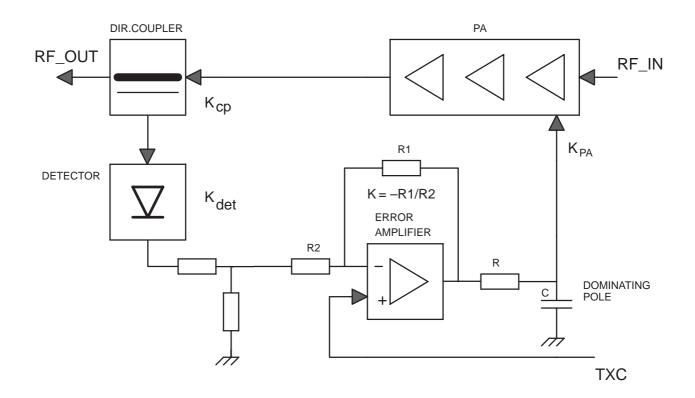
2nd IF-filter is a ceramic bandpass filter at 13 MHz. It attenuates adjacent channels, except for +/- 200 kHz there is not much attenuation. Those +/- 200 kHz interferers are filtered digitally by the baseband . So RX DACs are so good, that there is enough dynamic range for the faded 200 kHz interferer. Also the whole RX has to be able to handle signal levels in a linear way. After the 13 MHz filter there is a buffer for the IF-signal, which also converts and amplifies single ended signal from filter to balanced signal for the buffer and AD-converters in COBBA. Buffer in PLUS-SA has got voltage gain of 36 dB and buffer gain setting in COBBA is 0 dB. It is possible to set gainstep (9.5 dB) into COBBA via control bus, if needed.

## Transmitter

Transmitter chain consists of IQ–modulator, upconversion mixer, power amplifier and there is a power control loop.

I– and Q–signals are generated by baseband also in COBBA–ASIC. After post filtering (RC–network) they go into IQ–modulator in PLUSSA. It generates modulated TX IF–frequency, which is VHF–synthesizer output divided by two, meaning 116 MHz. There is also an AGC–amplifier in PLUSSA, but it is not used in GSM. Output is set to maximum with a 5–bit message in control register. AGC–amplifier is used in other digital systems, because PLUSSA is a core IC. After PLUSSA signal is attenuated and filtered for upconversion into final TX–frequency in CRFU\_1a. Upconversion mixer in CRFU\_1a is a so called image reject mixer. It is able to attenuate unwanted sideband in the upconverter output. Mixer itself is a double balanced Gilbert cell. Phase shifters required for image rejection are also integrated. Local signal needed in upconversion is generated by the UHF–synthesizer, but buffers for the mixer are integrated into CRFU\_1a. Output of the upconverter is buffered and matching network makes a single ended 50 ohm impedance.

Next stage is TX interstage filter, which attenuates unwanted signals from the upconverter, mainly LO–leakage and image frequency from the upconverter. Also it attenuates wideband noise. This bandpass filter is a SAW–filter.


After TX SAW–filter, there is a discrete transistor stage. Function of this block is to reduce the AM–content. This feature is realized with saturated operation of the V640 transistor. Typical input level into this amplifier is higher than output level.

The final amplication is realized with third IC, power amplifier is a MMIC. It has got a 50 ohm input, output requires an external matching network. MMIC contains three amplifier stages and interstage matchings. Also there is a gain control, which is controlled with a power control loop. PA has got over 35 dB power gain and it is able to produce 2.5 W into output with 0 dBm input level. Gain control range is over 35 dB to get desired power levels and power ramping up and down.

Harmonics generated by the nonlinear PA (class AB) are filtered out with the matching network and lowpass/bandstop filtering in the duplexer. Bandstop is required because of wideband noise located on RX–band.

Power control circuitry consists of power detector in the PA output and error amplifier in PLUSSA. There is a directional coupler connected between PA output and duplex filter. It takes a sample from the forward going power with certain ratio. This signal is rectified in a schottky–diode and it produces a DC–signal signal after filtering. This peak–detector is linear on absolute scale, except it saturates on very low and high power levels – it produces a S–shape curve.

This detected voltage is compared in the error–amplifier in PLUSSA to TXC–voltage, which is generated by DA–converter in COBBA. Because also gain control characteristics in PA are linear in absolute scale, control loop defines a voltage loop, when closed. Closed loop tracks the TXC–voltage quite linearilly. TXC has got a raised cosine form ( cos<sup>4</sup> – function ), which reduces switching transients, when pulsing power up and down. Because dynamic range of the detector is not wide enough to control the power ( actually RF output voltage ) over the whole range, there is a control named TXP to work under detected levels. Burst is enabled and set to rise with TXP until the output level is high enough, that feedback loop works. Loop controls the output via the control pin in PA MMIC to the desired output level and burst has got the waveform of TXC–ramps. Because feedback loops could be unstable, this loop is compensated with a dominating pole. This pole decreases gain on higher frequencies to get phase margins high enough.



## AGC strategy

AGC–amplifier is used to maintain output level of the receiver almost constant. AGC has to be set before each received burst, this is called pre–monitoring. Receiver is switched on roughly 150 ms before the burst begins, DSP measures received signal level and adjusts RXC, which controls RX AGC–amplifier or it switches off the LNA with PDATA0 control line. This pre–monitoring is done in three phases and this sets the settling times for RX AGC. Pre–monitoring is required because of linear receiver, received signal must be in full swing, no clipping is allowed and because DSP doesn't know, what is the level going to be in next burst.

There is at least 60 dB accurate gain control ( continous, analog ) and one digital step in LNA. It is typically about 30...35 dB.

RSSI must be measured on range –48...–110 dBm. After –48 dBm level MS reports to base station the same reading.

Because of RSSI–requirements, gain step in LNA is used roughly on –45 dBm RF–level and up to –10 dBm input RF–level accurate AGC is used to set RX output level. LNA is ON below –45 dBm. from –45 dBm down to –95 dBm this accurate AGC in PLUSSA is used to adjust the gain to desired value. RSSI–function is in DSP, but it works out received signal level by measuring RX IQ–level after all selectivity filtering (meaning IF–filters,  $\Sigma\Delta\pm$ converter and FIR–filter in DSP). So 50 dB accurate AGC dynamic range is required. Remaining 10 dB is for gain variations in RX–chain (for calibration). Below –95 dBm RF–levels, output level of the receiver drops dB by dB. At –95 dBm level output of the receiver gives 50 mVpp differentially. This is the target value for DSP. Below this it drops down to ca. 9 mVpp differentially @ –110 dBm RF–level.

This strategy is chosen because we have to roll off the AGC in PLUSSA early enough, that it won't saturate in selectivity tests. Also we can't start too early, then we will sacrifice the signal to noise ratio and it would require more accurate AGC dynamic range. 50 mVpp target level is set, because RX–DAC will saturate at 1.4 Vpp. This over 28 dB headroom is required to have margin for +/-200 kHz faded adjacent channel ( ca. 19 dB ) and extra 9 dB for pre–monitoring.

Production calibration is done with two RF–levels, LNA gain step is not calibrated. Gain changes in the receiver are taken off from the dynamic range of accurate AGC. Variable gain stage in PLUSSA is designed in a way, that it is capable of compensating itself, there is good enough margin in AGC.

## **AFC** function

AFC is used to lock the transceivers clock to frequency of the base station. AFC–voltage is generated in COBBA with 11 bit AD–converter. There is a RC–filter in AFC control line to reduce the noise from the converter. Settling time requirement for the RC–network comes from signalling, how often PSW (pure sine wave) slots occur. They are repeated after 10 frames , meaning that there is PSW in every 46 ms. AFC tracks base station frequency continously, so transceiver has got a stable frequency, because changes in VCTCXO–output don't occur so fast (temperature). Settling time requirement comes also from the start up–time allowed. When transceiver is in sleep mode and "wakes" up to receive mode , there is only about 5 ms for the AFC–voltage to settle. When the first burst comes in system clock has to be settled into +/– 0.1 ppm frequency accuracy. The VCTCXO–module requires also 5 ms to settle into final frequency. Amplitude rises into full swing in 1 ... 2 ms, but frequency settling time is higher so this oscillator must be powered up early enough.

## **Receiver blocks**

## **RX** interstage filter

| Parameter           | Min. | Тур.     | Max. | Unit |
|---------------------|------|----------|------|------|
| Passband            |      | 935 – 96 | MHz  |      |
| Insertion loss      |      |          | 3.8  | dB   |
| Maximum drive level |      |          | +10  | dBm  |

#### 1st mixer in CRFU\_1a

| Parameter                    | Min. | Typ./<br>Nom. | Max. | Unit/Notes |
|------------------------------|------|---------------|------|------------|
| Supply voltage               | 2.7  | 2.8           | 2.85 | V          |
| RX frequency range           | 935  |               | 960  | MHz        |
| LO frequency range           | 1006 |               | 1031 | MHz        |
| IF frequency                 |      | 71            |      | MHz        |
| Output resistance (balanced) | 10 k |               |      | ohm        |

#### 1st IF-filter

| Parameter                   | min. | typ. | max. | unit  |
|-----------------------------|------|------|------|-------|
| Operating temperature range | -20  |      | +75  | deg.C |
| Center frequency , fo       |      | 71   |      | MHz   |
| Maximum ins. loss at 1dBBW  |      |      | 11   | dB    |

## **Transmitter Blocks**

## TX interstage filter

| Parameter      | Min. | Тур.     | Max. | Unit |
|----------------|------|----------|------|------|
| Passband       |      | 890 – 91 | MHz  |      |
| Insertion loss |      |          | 3.8  | dB   |

#### **Power amplifier MMIC**

| Parameter                                         | Symbol | Test condition | Min | Тур | Max | Unit |
|---------------------------------------------------|--------|----------------|-----|-----|-----|------|
| Operating freq. range                             |        |                | 880 |     | 915 | MHz  |
| Supply voltage                                    | Vcc    |                | 3.1 | 3.5 | 5.0 | V    |
| Gain control range<br>( overall dynamic<br>range) |        | Vpc= 0.5 2.2 V | 45  |     |     | dB   |

## Synthesizer blocks

### VHF VCO and low pass filter

| Parameter            | Min. | Тур. | Max. | Unit/Notes                              |
|----------------------|------|------|------|-----------------------------------------|
| Supply voltage range | 2.7  | 2.8  | 2.58 | V                                       |
| Current consumption  |      | 4    | 7    | mA                                      |
| Control voltage      | 0.5  |      | 4.0  | V                                       |
| Operation frequency  |      | 232  |      | MHz                                     |
| Output level         | -13  | -10  |      | dBm(output after<br>the lowpass filter) |

#### UHF PLL

#### UHF PLL block in PLUSSA

| Parameter                 | Min. | Тур. | Max. | Unit/notes |
|---------------------------|------|------|------|------------|
| Input frequency range     | 650  |      | 1300 | MHz        |
| Reference input level     | 100  |      |      | mVpp       |
| Reference input frequency |      |      | 30   | MHz        |
| Reference input impedance |      | tbd. |      |            |

## UHF VCO module

| Parameter                                                                  | Conditions                              | Rating           | Unit/<br>Notes |
|----------------------------------------------------------------------------|-----------------------------------------|------------------|----------------|
| Supply voltage, Vcc                                                        |                                         | 2.8 +/- 0.1      | V              |
| Supply current, Icc                                                        | Vcc = 2.8 V,<br>Vc= 2.25 V              | < 10             | mA             |
| Control voltage, Vc                                                        | Vcc = 2.8 V                             | 0.8 3.7          | V              |
| Oscillation frequency                                                      | Vcc = 2.8 V<br>Vc = 0.8 V<br>Vc = 3.7 V | < 1006<br>> 1031 | MHz<br>MHz     |
| Tuning voltage in center frequency                                         | f = 1018.5 MHz                          | 2.25 +/- 0.25    | V              |
| Tuning voltage sensitivity in operating frequency range on each spot freq. | Vcc = 2.8 V<br>f=10061031<br>MHz        | 14 +/- 2         | MHz/V          |
| Output power level                                                         | Vcc=2.7 V<br>f=10061031<br>MHz          | –6.0 min.        | dBm            |

## UHF local signal input in CRFU\_1a

| Parameter             | Min. | Тур. | Max. | Unit/Notes |
|-----------------------|------|------|------|------------|
| Input frequency range | 990  |      | 1040 | MHz        |
| Input level           | 200  |      | 700  | mVpp       |

# Connections

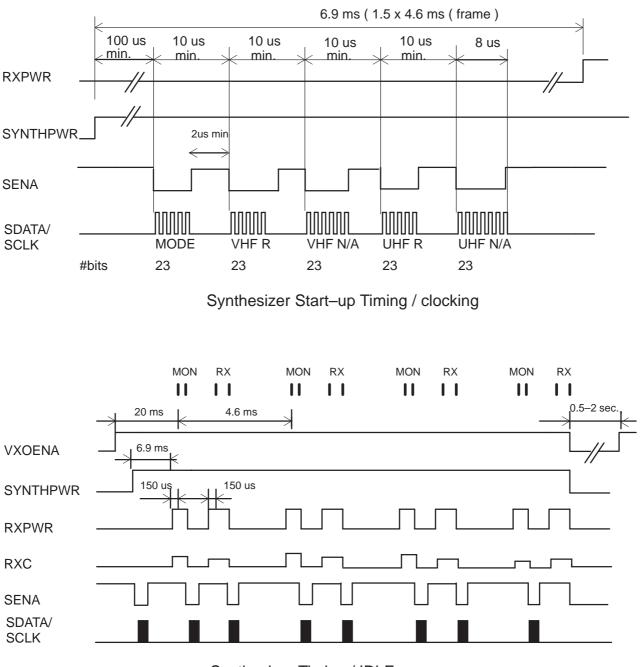
## RF connector and antenna switch

| Parameter                  | Min. | Тур. | Max. | Unit/Notes |
|----------------------------|------|------|------|------------|
| Operating frequency range  | 890  |      | 960  | MHz        |
| Insertion loss, COM to INT |      |      | 0.2  | dB         |
| Insertion loss, COM to EXT |      |      | 0.4  | dB         |
| Nominal impedance          |      | 50   |      | ohm        |
| Return loss                |      |      | 15   |            |

| Signal<br>name | From    | То    | Parameter      | Mini-<br>mum | Typi-<br>cal | Maxi-<br>mum | Unit | Function                 |
|----------------|---------|-------|----------------|--------------|--------------|--------------|------|--------------------------|
| VBATT          | Battery | RF    | Voltage        | 3.0          | 3.6          | 5.0/6.0      | V    | Supply voltage for RF    |
| VXOE-<br>NA    | MAD     | CCONT | Logic high "1" | 2.0          |              | 2.85         | V    | VR1, VR6 in<br>CCONT ON  |
|                |         |       | Logic low "0"  | 0            |              | 0.8          | V    | VR1, VR6 in<br>CCONT OFF |

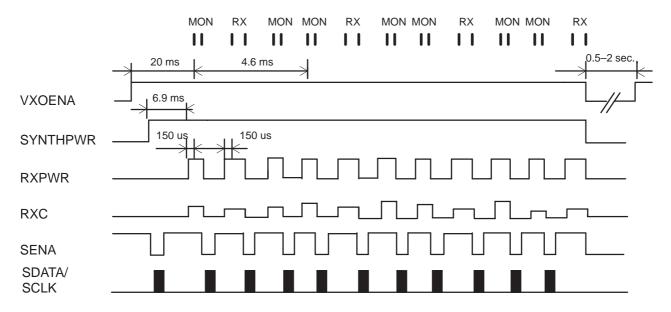
| Signal<br>name | From        | То          | Parameter                  | Mini-<br>mum       | Typi-<br>cal  | Maxi-<br>mum   | Unit     | Function                                                                     |
|----------------|-------------|-------------|----------------------------|--------------------|---------------|----------------|----------|------------------------------------------------------------------------------|
| SYNP<br>WR     | MAD         | CCONT       | Logic high "1"             | 2.0                |               | 2.85           | V        | VR3, VR4 in<br>CCONT ON                                                      |
|                |             |             | Logic low "0"              | 0                  |               | 0.8            | V        | VR3,VR4 in<br>CCONT OFF                                                      |
| RXPW<br>R      | MAD         | CCONT       | Logic high "1"             | 2.0                |               | 2.85           | V        | VR2, VR5 in<br>CCONT ON                                                      |
|                |             |             | Logic low "0"              | 0                  |               | 0.8            | V        | VR2, VR5 in<br>CCONT OFF                                                     |
| TXPW<br>R      | MAD         | CCONT       | Logic high "1"             | 2.0                |               | 2.85           | V        | VR7 in CCONT<br>ON                                                           |
|                |             |             | Logic low "0"              | 0                  |               | 0.8            | V        | VR7 in CCONT<br>OFF                                                          |
| VREF           | CCON<br>T   | PLUSSA      | Voltage                    | 1.478              | 1.5           | 1.523          | V        | Reference voltage<br>for PLUSSA and<br>CRFU1a                                |
| PDA-<br>TA0    | MAD         | CRFU_1<br>a | Logic high "1"             | 2.0                |               | 2.85           | V        | Nominal gain in<br>LNA                                                       |
|                |             |             | Logic low "0"              | 0                  |               | 0.8            | V        | Reduced gain in<br>LNA                                                       |
| SENA1          | MAD         | PLUSSA      | Logic high "1"             | 2.0                |               | 2.85           | V        | PLL enable                                                                   |
|                |             |             | Logic low "0"              | 0                  |               | 0.8            | V        |                                                                              |
| SDATA          | MAD         | PLUSSA      | Logic high "1"             | 2.0                |               | 2.85           | V        | Synthesizer data                                                             |
|                |             |             | Logic low "0"              | 0                  |               | 0.8            | V        |                                                                              |
| SCLK           | MAD         | PLUSSA      | Logic high "1"             | 2.0                |               | 2.85           | V        | Synthesizer clock                                                            |
|                |             |             | Logic low "0"              | 0                  |               | 0.8            | V        |                                                                              |
| AFC            | COB-<br>BA  | VCTCX<br>O  | Voltage                    | 0.046              |               | 2.254          | V        | Automatic fre-<br>quency control<br>signal for<br>VC(TC)XO                   |
| RFC            | VCTCX       | MAD         | Frequency                  |                    | 13            |                | MHz      | High stability clock                                                         |
|                | 0           |             | Signal amplitude           | 0.5                | 1.0           | 2.0            | Vpp      | signal for the logic circuits                                                |
| RXIP/<br>RXIN  | PLUS-<br>SA | COBBA       | Output level               |                    | 50            | 1344           | mVp<br>p | Differential RX 13<br>MHz signal to<br>baseband                              |
| TXIP/<br>TXIN  | COB-<br>BA  | PLUSSA      | Differential voltage swing | 0.75<br>x<br>1.022 | 0.75 x<br>1.1 | 0.75 x<br>1.18 | Vpp      | Differential in–<br>phase TX base-<br>band signal for the                    |
|                |             |             | DC level                   | 0.784              | 0.8           | 0.816          | V        | RF modulator                                                                 |
| TXQP/<br>TXQN  | COB-<br>BA  | PLUSSA      | Differential voltage swing | 0.75<br>x<br>1.022 | 0.75 x<br>1.1 | 0.75 x<br>1.18 | Vpp      | Differential quad-<br>rature phase TX<br>baseband signal<br>for the RF modu- |
|                |             |             | DC level                   | 0.784              | 0.8           | 0.816          | V        | lator                                                                        |

### NSE-3


## System Module

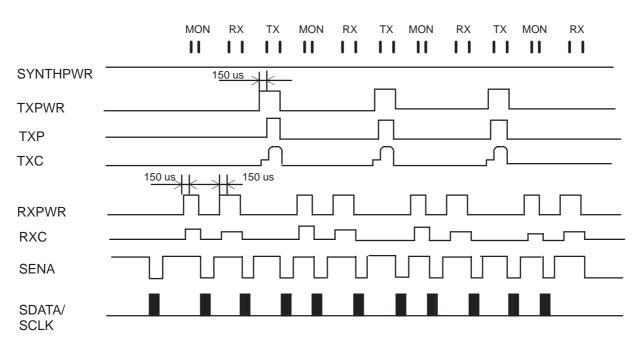
Technical Documentation

| Signal<br>name | From       | То     | Parameter      | Mini-<br>mum | Typi-<br>cal | Maxi-<br>mum | Unit | Function              |                           |
|----------------|------------|--------|----------------|--------------|--------------|--------------|------|-----------------------|---------------------------|
| TXP            | MAD        | PLUSSA | Logic high "1" | 2.0          |              | 2.85         | V    | Transmitter power     |                           |
|                |            |        | Logic low "0"  | 0            |              | 0.8          | V    | control enable        |                           |
| ТХС            | COB-<br>BA |        | PLUSSA         | Voltage Min  | 0.12         |              | 0.18 | V                     | Transmitter power control |
|                |            |        | Voltage Max    | 2.27         |              | 2.33         | V    | Control               |                           |
| RXC            | COB-<br>BA | PLUSSA | Voltage Min    | 0.12         |              | 0.18         | V    | Receiver gain control |                           |
|                |            |        | Voltage Max    | 2.27         |              | 2.33         | V    |                       |                           |


## Timings

## Synthesizer control timing

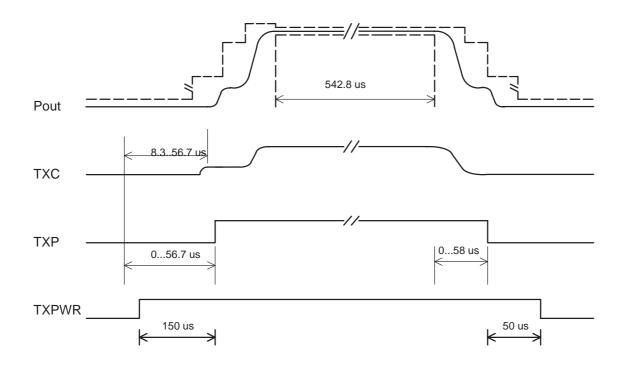



Synthesizer Timing / IDLE, one monitoring frame, frame can start also from RX–burst

#### **Technical Documentation**



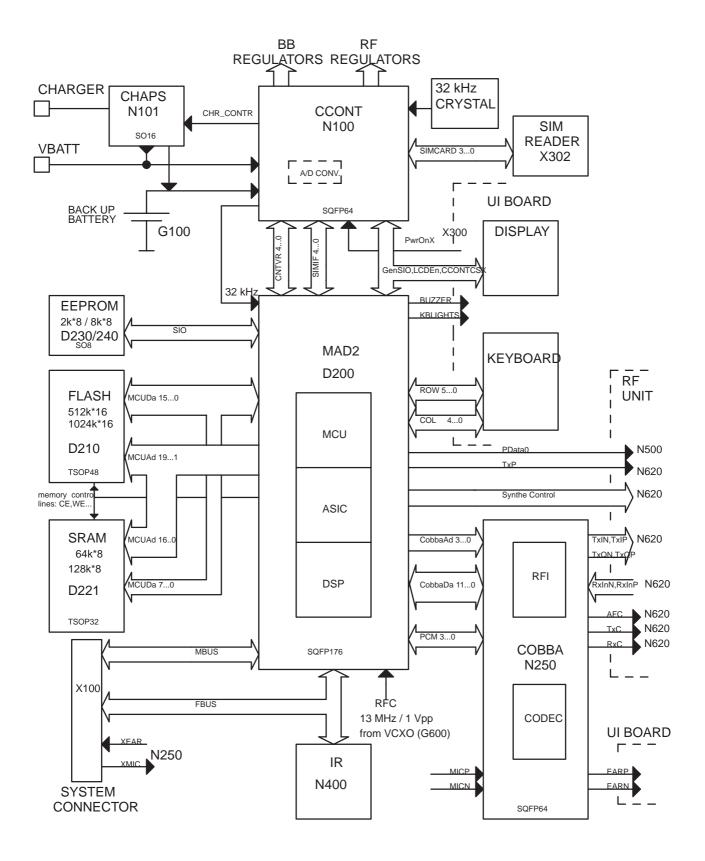
In case of long list of adjacent channels, there might be two monitoring– bursts/frame. Extra monitoring "replaces" TX–burst.


Synthesizer Timing / IDLE 2, frame can start from RX-burst



Sunthesizer Timing / traffic channel

System Module


### Transmitter power switching timing diagram



## Synthesizer clocking

Synthesizers are controlled via serial control bus, which consists of SDA-TA, SCLK and SENA1 signals. These lines form a synchronous data transfer line. SDATA is for the data bits, SCLK is 3.25 MHz clock and SENA1 is latch enable, which stores the data into counters or registers.

## **Block Diagram of Baseband Blocks**



System Module

Code: 0200951

# Parts list of UP8T (EDMS Issue 11.11)

| ITEM | CODE    | DESCRIPTION               | VALUE | TYPE             |
|------|---------|---------------------------|-------|------------------|
| R100 | 1430826 | Chip resistor             | 680 k | 5 % 0.063 W 0402 |
| R102 | 1430796 | Chip resistor             | 47 k  | 5 % 0.063 W 0402 |
| R103 | 1430770 | Chip resistor             | 4.7 k | 5 % 0.063 W 0402 |
| R104 | 1430796 | Chip resistor             | 47 k  | 5 % 0.063 W 0402 |
| R109 | 1620017 | Res network 0w06 2x100r j | 0404  | 0404             |
| R113 | 1430726 | Chip resistor             | 100   | 5 % 0.063 W 0402 |
| R116 | 1430788 | Chip resistor             | 22 k  | 5 % 0.063 W 0402 |
| R118 | 1430778 | Chip resistor             | 10 k  | 5 % 0.063 W 0402 |
| R120 | 1620025 | Res network 0w06 2x100k j | 0404  | 0404             |
| R122 | 1620019 | Res network 0w06 2x10k j  | 0404  | 0404             |
| R124 | 1620017 | Res network 0w06 2x100r j | 0404  | 0404             |
| R127 | 1620031 | Res network 0w06 2x1k0 j  | 0404  | 0404             |
| R128 | 1430718 | Chip resistor             | 47    | 5 % 0.063 W 0402 |
| R131 | 1422881 | Chip resistor             | 0.22  | 5 % 1 W 1218     |
| R136 | 1430804 | Chip resistor             | 100 k | 5 % 0.063 W 0402 |
| R140 | 1430690 | Chip jumper               |       | 0402             |
| R142 | 1430690 | Chip jumper               |       | 0402             |
| R152 | 1430690 | Chip jumper               |       | 0402             |
| R154 | 1430122 | Chip resistor             | 4.7 M | 5 % 0.063 W 0603 |
| R201 | 1430812 | Chip resistor             | 220 k | 5 % 0.063 W 0402 |
| R202 | 1430804 | Chip resistor             | 100 k | 5 % 0.063 W 0402 |
| R203 | 1620029 | Res network 0w06 2x4k7 j  | 0404  | 0404             |
| R211 | 1430804 | Chip resistor             | 100 k | 5 % 0.063 W 0402 |
| R213 | 1430690 | Chip jumper               |       | 0402             |
| R215 | 1620023 | Res network 0w06 2x47k j  | 0404  | 0404             |
| R252 | 1430740 | Chip resistor             | 330   | 5 % 0.063 W 0402 |
| R254 | 1620027 | Res network 0w06 2x47r j  | 0404  | 0404             |
| R256 | 1430762 | Chip resistor             | 2.2 k | 5 % 0.063 W 0402 |
| R257 | 1430796 | Chip resistor             | 47 k  | 5 % 0.063 W 0402 |
| R259 | 1430796 | Chip resistor             | 47 k  | 5 % 0.063 W 0402 |
| R260 | 1430788 | Chip resistor             | 22 k  | 5 % 0.063 W 0402 |
| R261 | 1430788 | Chip resistor             | 22 k  | 5 % 0.063 W 0402 |
| R263 | 1430778 | Chip resistor             | 10 k  | 5 % 0.063 W 0402 |
| R265 | 1430796 | Chip resistor             | 47 k  | 5 % 0.063 W 0402 |
| R267 | 1430754 | Chip resistor             | 1.0 k | 5 % 0.063 W 0402 |
| R268 | 1430754 | Chip resistor             | 1.0 k | 5 % 0.063 W 0402 |
| R270 | 1430804 | Chip resistor             | 100 k | 5 % 0.063 W 0402 |
| R271 | 1430804 | Chip resistor             | 100 k | 5 % 0.063 W 0402 |
| R281 | 1430792 | Chip resistor             | 33 k  | 5 % 0.063 W 0402 |
| R282 | 1430798 | Chip resistor             | 56 k  | 5 % 0.063 W 0402 |
| R301 | 1620031 | Res network 0w06 2x1k0 j  | 0404  | 0404             |
| R303 | 1620031 | Res network 0w06 2x1k0 j  | 0404  | 0404             |
| R305 | 1620031 | Res network 0w06 2x1k0 j  | 0404  | 0404             |

| <b>D</b> 00 <b>-</b> |         |                          |              |                    |
|----------------------|---------|--------------------------|--------------|--------------------|
| R307                 | 1620031 | Res network 0w06 2x1k0 j | 0404         | 0404               |
| R308                 | 1430754 | Chip resistor            | 1.0 k        | 5 % 0.063 W 0402   |
| R309                 | 1620031 | Res network 0w06 2x1k0 j | 0404         | 0404               |
| R401                 | 1430778 | Chip resistor            | 10 k         | 5 % 0.063 W 0402   |
| R402                 | 1430754 | Chip resistor            | 1.0 k        | 5 % 0.063 W 0402   |
| R403                 | 1430693 | Chip resistor            | 5.6          | 5 % 0.063 W 0402   |
| R404                 | 1430693 | Chip resistor            | 5.6          | 5 % 0.063 W 0402   |
| R405                 | 1430693 | Chip resistor            | 5.6          | 5 % 0.063 W 0402   |
| R406                 | 1430693 | Chip resistor            | 5.6          | 5 % 0.063 W 0402   |
| R500                 | 1430700 | Chip resistor            | 10           | 5 % 0.063 W 0402   |
| R501                 | 1430700 | Chip resistor            | 10           | 5 % 0.063 W 0402   |
| R502                 | 1430764 | Chip resistor            | 3.3 k        | 5 % 0.063 W 0402   |
| R504                 | 1620019 | Res network 0w06 2x10k j | 0404         | 0404               |
| R507                 | 1430740 | Chip resistor            | 330          | 5 % 0.063 W 0402   |
| R530                 | 1430700 | Chip resistor            | 10           | 5 % 0.063 W 0402   |
| R531                 | 1430762 | Chip resistor            | 2.2 k        | 5 % 0.063 W 0402   |
| R533                 | 1430796 | Chip resistor            | 47 k         | 5 % 0.063 W 0402   |
| R550                 | 1430752 | Chip resistor            | 820          | 5 % 0.063 W 0402   |
| R551                 | 1430732 | Chip resistor            | 330          | 5 % 0.063 W 0402   |
|                      |         | •                        | 330          |                    |
| R552                 | 1430740 | Chip resistor            |              | 5 % 0.063 W 0402   |
| R553                 | 1430774 | Chip resistor            | 6.8 k        | 5 % 0.063 W 0402   |
| R554                 | 1430770 | Chip resistor            | 4.7 k        | 5 % 0.063 W 0402   |
| R555                 | 1430726 | Chip resistor            | 100          | 5 % 0.063 W 0402   |
| R580                 | 1430706 | Chip resistor            | 15           | 5 % 0.063 W 0402   |
| R581                 | 1430832 | Chip resistor            | 2.7 k        | 5 % 0.063 W 0402   |
| R582                 | 1430762 | Chip resistor            | 2.2 k        | 5 % 0.063 W 0402   |
| R584                 | 1430780 | Chip resistor            | 12 k         | 5 % 0.063 W 0402   |
| R585                 | 1430774 | Chip resistor            | 6.8 k        | 5 % 0.063 W 0402   |
| R586                 | 1430738 | Chip resistor            | 270          | 5 % 0.063 W 0402   |
| R588                 | 1430744 | Chip resistor            | 470          | 5 % 0.063 W 0402   |
| R589                 | 1430710 | Chip resistor            | 22           | 5 % 0.063 W 0402   |
| R600                 | 1430788 | Chip resistor            | 22 k         | 5 % 0.063 W 0402   |
| R620                 | 1620029 | Res network 0w06 2x4k7 j | 0404         | 0404               |
| R621                 | 1430744 | Chip resistor            | 470          | 5 % 0.063 W 0402   |
| R622                 | 1430758 | Chip resistor            | 1.5 k        | 5 % 0.063 W 0402   |
| R623                 | 1430714 | Chip resistor            | 33           | 5 % 0.063 W 0402   |
| R624                 | 1430714 | Chip resistor            | 33           | 5 % 0.063 W 0402   |
| R625                 | 1430714 | Chip resistor            | 33           | 5 % 0.063 W 0402   |
| R626                 | 1430740 | Chip resistor            | 330          | 5 % 0.063 W 0402   |
| R627                 | 1430776 | Chip resistor            | 8.2 k        | 5 % 0.063 W 0402   |
| R628                 | 1430744 | Chip resistor            | 470          | 5 % 0.063 W 0402   |
| R629                 | 1430730 | Chip resistor            | 150          | 5 % 0.063 W 0402   |
| R630                 | 1430762 | Chip resistor            | 2.2 k        | 5 % 0.063 W 0402   |
| R631                 | 1430702 | Chip resistor            | 10           | 5 % 0.063 W 0402   |
| R632                 | 1430848 | Chip resistor            | 12 k         | 1 % 0.063 W 0402   |
| R634                 | 1430848 | Chip resistor            | 12 k         | 1 % 0.063 W 0402   |
| R635                 | 1430848 | Chip resistor            | 12 k<br>15 k | 2 % 0.063 W 0402   |
| 1/000                | 1430031 | וטופופשו קוווס           | IJK          | 2 /0 0.003 VV 040Z |

| R636 | 1430848 | Chip resistor |
|------|---------|---------------|
| R638 | 1430848 | Chip resistor |
| R640 | 1430734 | Chip resistor |
| R641 | 1820031 | NTC resistor  |
|      |         |               |
| R660 | 1430726 | Chip resistor |
| R662 | 1430714 | Chip resistor |
| R664 | 1430764 | Chip resistor |
| R666 | 1430770 | Chip resistor |
| R668 | 1430732 | Chip resistor |
| R670 | 1430726 | Chip resistor |
| R706 | 1430812 | Chip resistor |
| R708 |         |               |
|      | 1430762 | Chip resistor |
| R710 | 1430762 | Chip resistor |
| C100 | 2610003 | Tantalum cap. |
| C101 | 2320548 | Ceramic cap.  |
| C102 | 2320538 | Ceramic cap.  |
| C103 | 2604127 | Tantalum cap. |
| C104 | 2320131 | Ceramic cap.  |
| C105 | 2610003 | Tantalum cap. |
| C106 | 2312401 | •             |
|      |         | Ceramic cap.  |
| C107 | 2312401 | Ceramic cap.  |
| C108 | 2312401 | Ceramic cap.  |
| C109 | 2320544 | Ceramic cap.  |
| C110 | 2320544 | Ceramic cap.  |
| C112 | 2320544 | Ceramic cap.  |
| C113 | 2320508 | Ceramic cap.  |
| C114 | 2320546 | Ceramic cap.  |
| C115 | 2320620 | Ceramic cap.  |
| C116 | 2312401 | Ceramic cap.  |
| C117 | 2320584 | Ceramic cap.  |
| C118 | 2320584 | Ceramic cap.  |
| C119 | 2320584 |               |
|      |         | Ceramic cap.  |
| C120 | 2320620 | Ceramic cap.  |
| C121 | 2320620 | Ceramic cap.  |
| C122 | 2320584 | Ceramic cap.  |
| C127 | 2310784 | Ceramic cap.  |
| C128 | 2312401 | Ceramic cap.  |
| C129 | 2312401 | Ceramic cap.  |
| C130 | 2320544 | Ceramic cap.  |
| C131 | 2610003 | Tantalum cap. |
| C132 | 2312403 | Ceramic cap.  |
| C133 | 2312403 |               |
|      |         | Ceramic cap.  |
| C140 | 2312401 | Ceramic cap.  |
| C141 | 2320560 | Ceramic cap.  |
| C142 | 2610003 | Tantalum cap. |
| C143 | 2610003 | Tantalum cap. |
| C160 | 2320546 | Ceramic cap.  |
|      |         | -             |

| $\begin{array}{c} 12 \ k \\ 12 \ k \\ 220 \\ 330 \\ 100 \\ 33 \\ 3.3 \ k \\ 4.7 \ k \\ 180 \\ 100 \\ 220 \ k \\ 2.2 \ k \\ 10 \ u \\ 33 \ p \\ 1.0 \ u \\ 33 \ p \\ 1.0 \ u \\ 1.0 \ u \\ 1.0 \ u \\ 1.0 \ u \\ 1.0 \ n \\$ | 1 % 0.063 W 0402<br>1 % 0.063 W 0402<br>5 % 0.063 W 0402<br>2 % 0 0.063 W 0402<br>2 % 5 % 0 0402<br>2 % 5 % 5 % 0402<br>2 % 3 5 V 3.5x2.8x1.9<br>10 % 16 V 0603<br>2 % 5 0 V 0402<br>2 % 5 0 V 0402<br>5 % 5 0 V 0402<br>1 0 % 1 0 V 0805<br>1 0 % 1 0 V 0805<br>5 % 5 0 V 0402<br>2 0 % 1 0 V 3.2x1.6x1.6<br>1 0 % 1 0 V 0805<br>5 % 5 0 V 0402<br>2 0 % 1 0 V 3.2x1.6x1.6<br>1 0 % 1 0 V 0805<br>5 % 5 0 V 0402<br>2 0 % 1 0 V 3.2x1.6x1.6<br>1 0 % 1 0 V 0805<br>5 % 5 0 V 0402<br>2 0 % 1 0 V 3.2x1.6x1.6 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0 u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 % 10 V 0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|      |         | <b>•</b> •    |
|------|---------|---------------|
| C161 | 2320546 | Ceramic cap.  |
| C201 | 2320620 | Ceramic cap.  |
| C202 | 2320620 |               |
|      |         | Ceramic cap.  |
| C203 | 2320620 | Ceramic cap.  |
| C204 | 2320620 | Ceramic cap.  |
| C205 | 2320620 | Ceramic cap.  |
|      |         |               |
| C206 | 2320620 | Ceramic cap.  |
| C207 | 2320620 | Ceramic cap.  |
| C208 | 2320620 | Ceramic cap.  |
|      |         |               |
| C209 | 2320620 | Ceramic cap.  |
| C211 | 2320620 | Ceramic cap.  |
| C212 | 2312401 | Ceramic cap.  |
|      |         |               |
| C213 | 2320584 | Ceramic cap.  |
| C221 | 2320620 | Ceramic cap.  |
| C231 | 2320620 | Ceramic cap.  |
| C247 | 2320620 | Ceramic cap.  |
|      |         |               |
| C248 | 2320620 | Ceramic cap.  |
| C249 | 2320620 | Ceramic cap.  |
| C251 | 2320620 | Ceramic cap.  |
|      |         | •             |
| C252 | 2312296 | Ceramic cap.  |
| C253 | 2320131 | Ceramic cap.  |
| C254 | 2312401 | Ceramic cap.  |
| C255 | 2312401 |               |
|      |         | Ceramic cap.  |
| C256 | 2312296 | Ceramic cap.  |
| C257 | 2320131 | Ceramic cap.  |
| C258 | 2320131 | Ceramic cap.  |
|      |         | •             |
| C260 | 2312401 | Ceramic cap.  |
| C261 | 2310784 | Ceramic cap.  |
| C262 | 2320131 | Ceramic cap.  |
|      |         |               |
| C263 | 2320131 | Ceramic cap.  |
| C266 | 2610003 | Tantalum cap. |
| C268 | 2312401 | Ceramic cap.  |
| C269 | 2320546 | Ceramic cap.  |
|      |         |               |
| C271 | 2320560 | Ceramic cap.  |
| C272 | 2320131 | Ceramic cap.  |
| C301 | 2320560 | Ceramic cap.  |
|      |         | •             |
| C302 | 2320560 | Ceramic cap.  |
| C303 | 2320560 | Ceramic cap.  |
| C304 | 2320560 | Ceramic cap.  |
| C305 | 2320560 | Ceramic cap.  |
|      |         | •             |
| C306 | 2320560 | Ceramic cap.  |
| C307 | 2320560 | Ceramic cap.  |
| C308 | 2320560 | Ceramic cap.  |
|      |         |               |
| C309 | 2320560 | Ceramic cap.  |
| C310 | 2320560 | Ceramic cap.  |
| C311 | 2320560 | Ceramic cap.  |
| C312 | 2320546 | Ceramic cap.  |
| 0312 | 2020040 | Ceramic cap.  |

| 27 p<br>10 n<br>10 n<br>10 n<br>10 n<br>10 n<br>10 n<br>10 n<br>10 n                                                                                                                        | $5 \% 50 \lor 0402$<br>$5 \% 16 \lor 0402$                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 n                                                                                                                                                                                        | 5 % 16 V 0402<br>Y5 V 1210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 33 n                                                                                                                                                                                        | 10 % 16 V 0603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0 u                                                                                                                                                                                       | 10 % 10 V 0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0 u                                                                                                                                                                                       | 10 % 10 V 0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 33 n<br>33 n<br>1.0 u<br>100 n<br>33 n<br>33 n<br>10 u<br>1.0 u<br>27 p<br>100 p<br>33 n<br>100 p<br>100 p | Y5 V 1210<br>10 % 16 V 0603<br>10 % 16 V 0603<br>10 % 10 V 0805<br>10 % 25 V 0805<br>10 % 16 V 0603<br>20 % 10 V $3.2x1.6x1.6$<br>10 % 10 V 0805<br>5 % 50 V 0402<br>5 % 50 V 0402 |

| 0040 | 0000540 | <b>O</b>     |
|------|---------|--------------|
| C313 | 2320546 | Ceramic cap. |
| C400 | 2312401 | Ceramic cap. |
| C401 | 2312401 | Ceramic cap. |
|      |         |              |
| C402 | 2320544 | Ceramic cap. |
| C403 | 2320544 | Ceramic cap. |
| C404 | 2320544 | Ceramic cap. |
|      |         |              |
| C405 | 2310784 | Ceramic cap. |
| C500 | 2320530 | Ceramic cap. |
| C501 | 2320546 | Ceramic cap. |
| C502 | 2320620 | Ceramic cap. |
|      |         |              |
| C504 | 2320534 | Ceramic cap. |
| C505 | 2320550 | Ceramic cap. |
| C506 | 2320544 | Ceramic cap. |
| C507 | 2320550 | Ceramic cap. |
|      |         |              |
| C511 | 2320546 | Ceramic cap. |
| C512 | 2320560 | Ceramic cap. |
| C513 | 2312401 | Ceramic cap. |
| C514 | 2320540 | Ceramic cap. |
|      |         |              |
| C515 | 2320560 | Ceramic cap. |
| C516 | 2320530 | Ceramic cap. |
| C518 | 2320532 | Ceramic cap. |
| C520 | 2320602 | Ceramic cap. |
|      |         |              |
| C530 | 2312401 | Ceramic cap. |
| C531 | 2320546 | Ceramic cap. |
| C532 | 2320554 | Ceramic cap. |
| C535 | 2310181 | Ceramic cap. |
| C540 | 2312401 | Ceramic cap. |
|      |         |              |
| C550 | 2320546 | Ceramic cap. |
| C553 | 2320546 | Ceramic cap. |
| C554 | 2320546 | Ceramic cap. |
| C555 | 2320618 | Ceramic cap. |
|      |         |              |
| C559 | 2320584 | Ceramic cap. |
| C562 | 2320546 | Ceramic cap. |
| C563 | 2320546 | Ceramic cap. |
| C564 | 2320530 | Ceramic cap. |
| C565 | 2320532 | Ceramic cap. |
|      |         |              |
| C566 | 2320538 | Ceramic cap. |
| C567 | 2320584 | Ceramic cap. |
| C568 | 2320620 | Ceramic cap. |
| C570 | 2320584 | Ceramic cap. |
|      |         |              |
| C571 | 2320620 | Ceramic cap. |
| C572 | 2320532 | Ceramic cap. |
| C574 | 2320546 | Ceramic cap. |
| C575 | 2320560 | Ceramic cap. |
|      |         |              |
| C576 | 2310784 | Ceramic cap. |
| C582 | 2320584 | Ceramic cap. |
| C583 | 2320544 | Ceramic cap. |
|      |         | •            |

| $\begin{array}{c} 27 \text{ p} \\ 1.0 \text{ u} \\ 22 \text{ p} \\ 100 \text{ n} \\ 5.6 \text{ p} \\ 39 \text{ p} \\ 27 \text{ p} \\ 39 \text{ p} \\ 27 \text{ p} \\ 1.0 \text{ u} \\ 15 \text{ p} \\ 1.0 \text{ u} \\ 27 \text{ p} \\ 5.6 \text{ p} \\ 1.0 \text{ u} \\ 27 \text{ p} \\ 5.6 \text{ p} \\ 5$ | $5 \% 50 \lor 0402$<br>$10 \% 10 \lor 0805$<br>$10 \% 10 \lor 0805$<br>$5 \% 50 \lor 0402$<br>$5 \% 50 \lor 0402$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 % 50 V 0402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6.8 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25 % 50 V 0402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12 p<br>1.0 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 % 50 V 0402<br>5 % 50 V 0402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 % 16 V 0402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.0 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 % 50 V 0402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10 n<br>6.8 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 % 16 V 0402<br>0.25 % 50 V 0402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 27 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 % 50 V 0402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 100 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 % 50 V 0402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 100 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 % 25 V 0805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.0 n<br>22 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 % 50 V 0402<br>5 % 50 V 0402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| r-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| C585 | 2320560 | Ceramic cap.              | 100 p          | 5 % 50 V 0402         |
|------|---------|---------------------------|----------------|-----------------------|
| C586 | 2320540 | Ceramic cap.              | 15 p           | 5 % 50 V 0402         |
| C587 | 2310248 | Ceramic cap.              | 4.7 n          | 5 % 50 V 1206         |
| C588 | 2320546 | Ceramic cap.              | 27 p           | 5 % 50 V 0402         |
| C590 | 2312401 | Ceramic cap.              | 1.0 u          | 10 % 10 V 0805        |
| C592 | 2610003 | Tantalum cap.             | 10 u           | 20 % 10 V 3.2x1.6x1.6 |
| C600 | 2312401 | Ceramic cap.              | 1.0 u          | 10 % 10 V 0805        |
| C601 | 2320584 | Ceramic cap.              | 1.0 n          | 5 % 50 V 0402         |
| C602 | 2320620 | Ceramic cap.              | 10 n           | 5 % 16 V 0402         |
| C603 | 2320584 | Ceramic cap.              | 1.0 n          | 5 % 50 V 0402         |
| C604 | 2312401 | Ceramic cap.              | 1.0 u          | 10 % 10 V 0805        |
| C610 |         | Tantalum cap.             | 220 u          | 10 % 10 V 7.3x4.3x4.1 |
| C611 |         | -                         | 220 u<br>220 u | 10 % 10 V 7.3x4.3x4.1 |
| C612 |         | Tantalum cap.             | 220 u<br>220 u |                       |
|      |         | Tantalum cap.             |                | 10 % 10 V 7.3x4.3x4.1 |
| C613 | 2320538 | Ceramic cap.              | 12 p           | 5 % 50 V 0402         |
| C614 | 2320526 | Ceramic cap.              | 3.9 p          | 0.25 % 50 V 0402      |
| C621 | 2320534 | Ceramic cap.              | 8.2 p          | 0.25 % 50 V 0402      |
| C622 | 2320514 | Ceramic cap.              | 1.2 p          | 0.25 % 50 V 0402      |
| C623 | 2320534 | Ceramic cap.              | 8.2 p          | 0.25 % 50 V 0402      |
| C624 |         | Ceramic cap.              | 27 p           | 5 % 50 V 0402         |
| C627 | 2320738 | Ceramic cap.              | 470 p          | 10 % 50 V 0402        |
| C630 | 2320546 | Ceramic cap.              | 27 p           | 5 % 50 V 0402         |
| C632 | 2320530 | Ceramic cap.              | 5.6 p          | 0.25 % 50 V 0402      |
| C633 | 2320532 | Ceramic cap.              | 6.8 p          | 0.25 % 50 V 0402      |
| C635 | 2320560 | Ceramic cap.              | 100 p          | 5 % 50 V 0402         |
| C636 | 2312401 | Ceramic cap.              | 1.0 u          | 10 % 10 V 0805        |
| C638 | 2320552 | Ceramic cap.              | 47 p           | 5 % 50 V 0402         |
| C639 | 2320592 | Ceramic cap.              | 2.2 n          | 5 % 50 V 0402         |
| C640 | 2310784 | Ceramic cap.              | 100 n          | 10 % 25 V 0805        |
| C641 | 2310784 | Ceramic cap.              | 100 n          | 10 % 25 V 0805        |
| C642 | 2320552 | Ceramic cap.              | 47 p           | 5 % 50 V 0402         |
| C643 | 2312401 | Ceramic cap.              | 1.0 u          | 10 % 10 V 0805        |
| C644 |         | Ceramic cap.              | 15 p           | 5 % 50 V 0402         |
| C649 | 2320131 | Ceramic cap.              | 33 n           | 10 % 16 V 0603        |
| C652 | 2320536 | Ceramic cap.              | 10 p           | 5 % 50 V 0402         |
| C653 | 2320536 | Ceramic cap.              | 10 p           | 5 % 50 V 0402         |
| C655 | 2320530 | Ceramic cap.              | 5.6 p          | 0.25 % 50 V 0402      |
| C656 | 2320620 | Ceramic cap.              | 10 n           | 5 % 16 V 0402         |
| C660 | 2320546 | Ceramic cap.              | 27 p           | 5 % 50 V 0402         |
| C662 | 2320546 | Ceramic cap.              | 27 p<br>27 p   | 5 % 50 V 0402         |
| C695 | 2312401 | Ceramic cap.              | 1.0 u          | 10 % 10 V 0805        |
| C700 | 2312401 | Ceramic cap.              |                | 0.25 % 50 V 0402      |
|      |         | •                         | 3.3 p          |                       |
| L103 | 3203701 | Ferrite bead 33r/100mhz   | 0805           | 0805                  |
| L104 | 3203701 | Ferrite bead 33r/100mhz   | 0805           | 0805                  |
| L105 |         | Ferrite bead 33r/100mhz   | 0805           | 0805                  |
| L106 | 3640035 | Filt z>450r/100m 0r7max ( |                | 0603                  |
| L107 | 3640035 | Filt z>450r/100m 0r7max ( | J.∠a 0603      | 0603                  |

| I AND        |                    |                                |                                  | INC                           | DE-3       |
|--------------|--------------------|--------------------------------|----------------------------------|-------------------------------|------------|
| Technica     | al Document        | tation                         |                                  | System Mo                     | odule      |
|              |                    |                                |                                  |                               |            |
| L108         | 3640035            | Filt z>450r/100m 0r7ma         | ax 0.2a 0603                     | 0603                          |            |
| L400         | 3640035            | Filt z>450r/100m 0r7ma         | ax 0.2a 0603                     | 0603                          |            |
| L500         | 3643039            | Chip coil                      | 220 n                            | 5 % Q=35/100                  | MHz 0805   |
| L501         | 3643039            | Chip coil                      | 220 n                            | 5 % Q=35/100                  | MHz 0805   |
| L550         | 3640069            | Filt 47pf 25v 0r01 6a          | 1206                             |                               |            |
| L552         | 3645157            | Chip coil                      | 100 n                            | 10 % Q=12/100                 | ) MHz 0603 |
| L554         | 3645157            | Chip coil                      | 100 n                            | 10 % Q=12/100                 | ) MHz 0603 |
| L580         | 3645161            | Chip coil                      | 150 n                            | 5 % Q=14/100                  | MHz 0603   |
| L581         | 3643025            | Chip coil                      | 56 n                             | 5 % Q=40/200                  | MHz 0805   |
| L600         | 3641206            | Chip coil                      |                                  | 10 % Q=25/7.9<br>1008         | 6 MHz      |
| L621         | 3641300            | Chip coil                      | 330 n                            | 5 % Q=30/25 N                 | 1Hz 1008   |
| L623         | 3641626            | Chip coil                      | 220 n                            | 2 % Q=30/100                  | MHz 0805   |
| L624         | 3641626            | Chip coil                      | 220 n                            | 2 % Q=30/100                  | MHz 0805   |
| B100         | 4510003            | Crystal                        | 32.768 k                         | +-20PPM 8x3.8                 | 8          |
| G530         | 4350099            | Vco 1006–1031mhz 2.8           | 3v 10ma gsm                      |                               |            |
| G600         | 4510153            | VCTCXO                         | 13.0 M                           | +–5PPM 2.8V                   | GSM        |
| F101         | 5119019            | SM, fuse f 1.5a 32v            |                                  |                               |            |
| Z500         | 4511017            |                                | 47.5+–12.5 M                     | /3.8DB 4X4                    |            |
| Z505         | 4511015            |                                | 02.5+–12.5 M                     | /3.8DB 4X4                    |            |
| Z550         | 4512005            | Dupl 890–915/935–960           |                                  | 20x14                         |            |
| Z620         | 4510009            | Cer.filt 13+–0.09mhz           | 7.2x3.2                          | 7.2x3.2                       |            |
| Z621         | 4510137            | Saw filter                     | 71+-0.09 M                       | 14.2x8.4                      |            |
| V100         | 1825005            | Chip varistor vwm14v v         |                                  | 0805                          |            |
| V101         | 4113651            | Trans. supr.                   | QUAD                             | 6 V SOT23–5                   |            |
| V102         | 4113651            | Trans. supr.                   | QUAD                             | 6 V SOT23–5                   |            |
| V103         | 4113601<br>4113651 | Emi filter emif01–5250s        | QUAD                             | SOT23-5                       |            |
| V104<br>V116 | 4113051<br>4110067 | Trans. supr.<br>Schottky diode | MBR0520L                         | 6 V SOT23–5<br>20 V 0.5 A SOE | 1100       |
| V110<br>V250 | 4210100            | Transistor                     | BC848W                           | npn 30 V SOT3                 |            |
| V250<br>V550 | 4110014            | Sch. diode x 2                 | BAS70-07                         | 70 V 15 mA SC                 |            |
| V580         | 4110062            | Cap. diode x 2                 | BAS70-07<br>BB535                | 30 V 2.1/18.7P                |            |
| V581         | 4210066            | Transistor                     | BFR93AW                          | npn 12 V 35 m/                |            |
| V640         | 4210066            | Transistor                     | BFR93AW                          | npn 12 V 35 m/                |            |
| V705         | 4210100            | Transistor                     | BC848W                           | npn 30 V SOT3                 |            |
| D200         | 4370279            | Mad2 rom3 f711604 c12          |                                  | TQFP176                       | 20         |
| D211         | 4340261            | Te28f800 flashm 512kx          |                                  |                               |            |
| D220         | 4340273            | IC, SRAM                       | 10 120110                        | STSOP32                       |            |
| D230         | 4342264            | IC, EEPROM                     |                                  | SO8S                          |            |
| D402         | 4340369            | IC, dual bus buffer sso        | TC7W126FU                        | SSOP8                         |            |
| N100         | 4370047            | Ccont 2f dct3 bb asic          | tqfp64                           | TQFP64                        |            |
| N101         | 4370165            | Uba2006t chaps charg.          |                                  | SO16                          |            |
| N201         | 4340423            | IC, regulator                  | TK11230M                         | 3.0 V SOT23L                  |            |
| N250         | 4370317            |                                | Cobba_gj b07 bb asic dct3 tqfp64 |                               |            |
| N400         | 4860031            | Tfdu4100 irda tx/rx>2.7        |                                  | TQFP64<br>115KBITS            |            |
| N500         | 4370253            | Crfu1a rx+tx uhf gsm v         |                                  | SOT401-1                      |            |
| N550         | 4370319            | Rf9106 pw amp 880-97           |                                  | PS                            | OP2–16     |
|              |                    | - •                            |                                  |                               |            |

PAMS

NSE-3

| NSE-3 |  |
|-------|--|
|-------|--|

PAMS

System Module

**Technical Documentation** 

| N620<br>S301<br>S302<br>X100 | 5219005<br>5219005            | Plussa txmod+rxif+2pll tqfp64<br>IC, SWsp–no 30vdc 50ma smSW TAU<br>IC, SWsp–no 30vdc 50ma smSW TAU<br>SM system conp 6of 2do miosiack |                  | SMD<br>SMD     |
|------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|
| X100<br>X101<br>X102         | 5469061<br>5469069<br>5469069 | SM, system conn 6af+3dc+mic+jack<br>SM, batt conn 2pol spr p3.5 100v<br>SM, batt conn 2pol spr p3.5 100v                               | 100V2A<br>100V2A |                |
| X300<br>X302                 | 5469009<br>5460021<br>5400085 | SM, conn 2x14m spring p1.0 pcb/p                                                                                                       | PCB/PCB<br>SM    |                |
| X540<br>A500                 | 5429007<br>9517012            | SM, coax conn m sw 50r 0.4–2ghz                                                                                                        | UP8              |                |
| A500<br>A510                 | 9517012<br>9517013<br>9380753 | SM, d rf shield diricol422 rid940 d<br>SM, d rf shield pa–can dmc00455<br>Bar code label dmd03311 27x6.5                               | 27x6.5           |                |
|                              | 9850051<br>9850051            | PCB UP8 123.25X41.0X1.0 M6 4/PA<br>PC board UP8                                                                                        |                  | .0x1.0 m6 4/pa |

System Module

This page intentionally left blank.